Trends Plant Sci
September 2025
Despite recent advances in plant trait ecology, we identified a knowledge gap in understanding how plants strategize to cope with severe and recurrent disturbances. Here, we propose a new classification system based on three hierarchical binary attributes: woodiness, reflecting longevity of plant structures; clonality, indicating the ability to regenerate from both above- and belowground organs; and resprouting ability, referring to the ability to replace aboveground organs. This framework results in six Belowground Persistence Types (BPTs): 1, herbaceous seeder; 2, herbaceous non-clonal resprouter; 3, herbaceous clonal resprouter; 4, woody seeder; 5, woody non-clonal resprouter; and 6, woody clonal resprouter.
View Article and Find Full Text PDFThe elemental content of life is a key trait shaping ecology and evolution, yet organismal stoichiometry has largely been studied on a case-by-case basis. This limitation has hindered our ability to identify broad patterns and mechanisms across taxa and ecosystems. To address this, we present StoichLife, a global dataset of 28,049 records from 5,876 species spanning terrestrial, freshwater, and marine realms.
View Article and Find Full Text PDFFloodplain forests are currently undergoing substantial reorganization processes due to the combined effects of management-induced altered hydrological conditions, climate change and novel invasive pathogens. Nowadays, the ash dieback is one of the most concerning diseases affecting European floodplain forests, causing substantial tree mortality and threatening the loss of the dominant key tree species of the hardwood floodplain forest, Fraxinus excelsior. Understanding how the increased light availability caused by pathogen-driven mortality in combination with altered hydrological conditions and climate change affects growth responses in a diverse forest community is of crucial importance for conservation efforts.
View Article and Find Full Text PDFDespite evidence from grasslands experiments suggesting that plant species loss reduces biomass production, the strength of biodiversity-ecosystem functioning relationships in managed grasslands is still debated. High land-use intensity and reduced species pools are often suggested to make relationships between biodiversity and productivity less positive or even negative, but concrete evidence is still scarce. We investigated biodiversity-productivity relationships over two years in 150 managed grasslands in Germany.
View Article and Find Full Text PDFCurr Biol
October 2023
Human activities cause substantial changes in biodiversity. Despite ongoing concern about the implications of invertebrate decline, few empirical studies have examined the ecosystem consequences of invertebrate biomass loss. Here, we test the responses of six ecosystem services informed by 30 above- and belowground ecosystem variables to three levels of aboveground (i.
View Article and Find Full Text PDFLand-use intensification is one of the main drivers threatening biodiversity in managed grasslands. Despite multiple studies investigating the effect of different land-use components in driving changes in plant biodiversity, their effects are usually studied in isolation. Here, we establish a full factorial design crossing fertilization with a combined treatment of biomass removal, on 16 managed grasslands spanning a gradient in land-use intensity, across three regions in Germany.
View Article and Find Full Text PDFPlant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function.
View Article and Find Full Text PDF