Natural communities form networks of species linked by interactions. Understanding the structure and dynamics of these ecological networks is pivotal to predicting species extinction risks, community stability and ecosystem functioning under global change. Traditionally, ecological network research has focused on interactions involving the flow of matter and energy, such as feeding or pollination.
View Article and Find Full Text PDFThe elemental content of life is a key trait shaping ecology and evolution, yet organismal stoichiometry has largely been studied on a case-by-case basis. This limitation has hindered our ability to identify broad patterns and mechanisms across taxa and ecosystems. To address this, we present StoichLife, a global dataset of 28,049 records from 5,876 species spanning terrestrial, freshwater, and marine realms.
View Article and Find Full Text PDFDispersal is a fundamental process driving many ecological patterns. During transfer, species often make large-scale displacements resulting in significant energy losses with implications for fitness and survival, however generalising these losses across different taxonomic groups is challenging. We developed a bioenergetic dispersal model based on fundamental processes derived from species traits.
View Article and Find Full Text PDFThe relationship of plant diversity and several ecosystem functions strengthens over time. This suggests that the restructuring of biotic interactions in the process of a community's assembly and the associated changes in function differ between species-rich and species-poor communities. An important component of these changes is the feedback between plant and soil community history.
View Article and Find Full Text PDFTurnover in species composition through time is a dominant form of biodiversity change, which has profound effects on the functioning of ecological communities. Turnover rates differ markedly among communities, but the drivers of this variation across taxa and realms remain unknown. Here we analyse 42,225 time series of species composition from marine, terrestrial and freshwater assemblages, and show that temporal rates of turnover were consistently faster in locations that experienced faster temperature change, including both warming and cooling.
View Article and Find Full Text PDFBiodiversity experiments revealed that plant diversity loss can decrease ecosystem functions across trophic levels. To address why such biodiversity-function relationships strengthen over time, we established experimental mesocosms replicating a gradient in plant species richness across treatments of shared versus non-shared history of (1) the plant community and (2) the soil fauna community. After 4 months, we assessed the multitrophic functioning of soil fauna via biomass stocks and energy fluxes across the food webs.
View Article and Find Full Text PDFInformation transmission among species is a fundamental aspect of natural ecosystems that faces significant disruption from rapidly growing anthropogenic sensory pollution. Understanding the constraints of information flow on species' trophic interactions is often overlooked due to a limited comprehension of the mechanisms of information transmission and the absence of adequate analytical tools. To fill this gap, we developed a sensory information-constrained functional response (IFR) framework, which accounts for the information transmission between predator and prey.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
July 2024
Spatial and trophic processes profoundly influence biodiversity, yet ecological theories often treat them independently. The theory of island biogeography and related theories on metacommunities predict higher species richness with increasing area across islands or habitat patches. In contrast, food-web theory explores the effects of traits and network structure on coexistence within local communities.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
December 2024
Understanding the factors that determine the occurrence and strength of ecological interactions under specific abiotic and biotic conditions is fundamental since many aspects of ecological community stability and ecosystem functioning depend on patterns of interactions among species. Current approaches to mapping food webs are mostly based on traits, expert knowledge, experiments, and/or statistical inference. However, they do not offer clear mechanisms explaining how trophic interactions are affected by the interplay between organism characteristics and aspects of the physical environment, such as temperature, light intensity or viscosity.
View Article and Find Full Text PDFNat Clim Chang
February 2024
Higher temperatures are expected to reduce species coexistence by increasing energetic demands. However, flexible foraging behaviour could balance this effect by allowing predators to target specific prey species to maximize their energy intake, according to principles of optimal foraging theory. Here we test these assumptions using a large dataset comprising 2,487 stomach contents from six fish species with different feeding strategies, sampled across environments with varying prey availability over 12 years in Kiel Bay (Baltic Sea).
View Article and Find Full Text PDFThe dataset presents a compilation of stomach contents from six demersal fish species from two functional groups inhabiting the Baltic Sea. It includes detailed information on prey identities, body masses, and biomasses recovered from both the fish's digestive systems and their surrounding environment. Environmental parameters, such as salinity and temperature levels, have been integrated to enrich this dataset.
View Article and Find Full Text PDFAt macroecological scales, the provision of Nature's contributions to people (NCP) is mostly estimated with biophysical information, ignoring the ecological processes underlying them. This hinders our ability to properly quantify the impact of declining biodiversity and the provision of NCP. Here, we propose a framework that combines local-scale food web energy flux approaches and large-scale biodiversity models to evaluate ecosystem functions and flux-related NCP at extensive spatiotemporal scales.
View Article and Find Full Text PDFUnderstanding the mechanisms underlying diversity-productivity relationships (DPRs) is crucial to mitigating the effects of forest biodiversity loss. Tree-tree interactions in diverse communities are fundamental in driving growth rates, potentially shaping the emergent DPRs, yet remain poorly explored. Here, using data from a large-scale forest biodiversity experiment in subtropical China, we demonstrated that changes in individual tree productivity were driven by species-specific pairwise interactions, with higher positive net pairwise interaction effects on trees in more diverse neighbourhoods.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2023
Artificial light at night (ALAN) is eroding natural light cycles and thereby changing species distributions and activity patterns. Yet little is known about how ecological interaction networks respond to this global change driver. Here, we assess the scientific basis of the current understanding of community-wide ALAN impacts.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2023
Artificial light at night (ALAN) is predicted to have far-reaching consequences for natural ecosystems given its influence on organismal physiology and behaviour, species interactions and community composition. Movement and predation are fundamental ecological processes that are of critical importance to ecosystem functioning. The natural movements and foraging behaviours of nocturnal invertebrates may be particularly sensitive to the presence of ALAN.
View Article and Find Full Text PDFPlant community productivity generally increases with biodiversity, but the strength of this relationship exhibits strong empirical variation. In meta-food-web simulations, we addressed if the spatial overlap in plants' resource access and animal space-use can explain such variability. We found that spatial overlap of plant resource access is a prerequisite for positive diversity-productivity relationships, but causes exploitative competition that can lead to competitive exclusion.
View Article and Find Full Text PDFWastewater treatment plants (WWTPs) have greatly improved water quality globally. However, treated effluents still contain a complex cocktail of pollutants whose environmental effects might go unnoticed, masked by additional stressors in the receiving waters or by spatiotemporal variability. We conducted a BACI (Before-After/Control-Impact) ecosystem manipulation experiment, where we diverted part of the effluent of a large tertiary WWTP into a small, unpolluted stream to assess the effects of a well-treated and highly diluted effluent on riverine diversity and food web dynamics.
View Article and Find Full Text PDFMovement facilitates and alters species interactions, the resulting food web structures, species distribution patterns, community structures and survival of populations and communities. In the light of global change, it is crucial to gain a general understanding of how movement depends on traits and environmental conditions. Although insects and notably Coleoptera represent the largest and a functionally important taxonomic group, we still know little about their general movement capacities and how they respond to warming.
View Article and Find Full Text PDFAnthropogenic global warming has major implications for mobile terrestrial insects, including long-term effects from constant warming, for example, on species distribution patterns, and short-term effects from heat extremes that induce immediate physiological responses. To cope with heat extremes, they either have to reduce their activity or move to preferable microhabitats. The availability of favorable microhabitat conditions is strongly promoted by the spatial heterogeneity of habitats, which is often reduced by anthropogenic land transformation.
View Article and Find Full Text PDFMovement is critical to animal survival and, thus, biodiversity in fragmented landscapes. Increasing fragmentation in the Anthropocene necessitates predictions about the movement capacities of the multitude of species that inhabit natural ecosystems. This requires mechanistic, trait-based animal locomotion models, which are sufficiently general as well as biologically realistic.
View Article and Find Full Text PDFGlobal ecosystems are facing a deepening biodiversity crisis, necessitating robust approaches to quantifying species extinction risk. The lower limit of the macroecological relationship between species range and body size has long been hypothesized as an estimate of the relationship between the minimum viable range size (MVRS) needed for species persistence and the organismal traits that affect space and resource requirements. Here, we perform the first explicit test of this assumption by confronting the MVRS predicted by the range-body size relationship with an independent estimate based on the scale of synchrony in abundance among spatially separated populations of riverine fish.
View Article and Find Full Text PDFUnderstanding the formation of feeding links provides insights into processes underlying food webs. Generally, predators feed on prey within a certain body-size range, but a systematic quantification of such feeding niches is lacking. We developed a size-constrained feeding-niche (SCFN) model and parameterized it with information on both realized and non-realized feeding links in 72 aquatic and 65 terrestrial food webs.
View Article and Find Full Text PDFThe ratio of predator-to-prey biomass is a key element of trophic structure that is typically investigated from a food chain perspective, ignoring channels of energy transfer (e.g. omnivory) that may govern community structure.
View Article and Find Full Text PDFTaxonomic, functional, and phylogenetic diversities are important facets of biodiversity. Studying them together has improved our understanding of community dynamics, ecosystem functioning, and conservation values. In contrast to species, traits, and phylogenies, the diversity of biotic interactions has so far been largely ignored as a biodiversity facet in large-scale studies.
View Article and Find Full Text PDF