98%
921
2 minutes
20
The global loss of biodiversity has motivated many studies that experimentally vary plant species richness and examine the consequences for ecosystem functioning. Such experiments generally show a positive relationship between above- and below-ground biodiversity and the functioning of terrestrial ecosystems. Moreover, this relationship tends to strengthen over time, seen as enhanced functioning of diverse plant communities and reduced functioning of low-diversity plant communities. Differences in multitrophic community assembly and biotic interactions in high- versus low-diversity plant communities are hypothesized to affect plant performance by altering consumer community structure and function and driving plastic or micro-evolutionary responses of plant species in the plant communities. To resolve this complex interplay of community history, we separated these effects into plant and soil history. Plant history refers to all plant-level responses to past abiotic and biotic selection pressures experienced in their communities, while soil history relates to all abiotic and biotic soil properties developed as a legacy of plant-soil interactions under variable plant diversity. We set up a biodiversity experiment in an Ecotron, a terrestrial mesocosm facility that allows controlling environmental conditions above- and below-ground, to test whether the strengthening biodiversity-ecosystem functioning relationship is due to soil history, plant history, or a combination of both. We established a plant diversity gradient consisting of 1, 2, 3, and 6 grassland plant species and factorially nested with soil history and plant history treatments for each level of plant species richness. Representative results demonstrate the successful establishment of target treatments in the Ecotron experiment, observing the effects of plant and soil history on initial plant development and final plant growth. Additionally, we provide a case study for data analysis of individual response variables. We outline research objectives and methods to comprehensively assess the multifunctional responses to the experimental treatments necessary to ultimately address the overarching hypothesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67496 | DOI Listing |
PLoS One
September 2025
Department of Research, Collections and Conservation, Environmental Archaeology and Materials Science, National Museum of Denmark, Kongens Lyngby, Denmark.
During the Late Bronze Age (ca. 11th-8th century BCE), far-reaching and extensive trade and exchange networks linked communities across Europe. The area around Seddin in north-western Brandenburg, Germany, has long been considered as at the core of one such networks.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4.
The size and composition of local species pools are, in part, determined by past dispersal events. Predicting how communities respond to future disturbances, such as fluctuating environmental conditions, requires knowledge of such histories. We assessed the influence of a historical dispersal event on community assembly by simulating various scales of dispersal for 240 serpentine annual plant communities that experienced a large shift from drought to high rainfall conditions over three years.
View Article and Find Full Text PDFHealth Phys
September 2025
Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
External exposure due to secondary photons (predominantly bremsstrahlung) generated from electron source emissions in environmental soil are of concern due to their ability to deposit significant amounts of ionizing energy to organs and tissues within the body. The "condensed history method" employed in many modern Monte Carlo (MC) codes may be used to simulate secondary photon yields (given as photons per beta decay) arising from electron source emissions with relatively few assumptions regarding the secondary photon spatial, energy, and angular dependencies. These yields may in turn be used to derive protection quantities such as secondary photon effective dose rate (DR) and risk coefficients for a variety of idealized external exposure scenarios.
View Article and Find Full Text PDFEcology
September 2025
Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, Virginia, USA.
The Earth's grasslands have experienced extensive alterations to their grazing regimes over the course of human history. We asked how native grassland herbivores (bison, prairie dogs, and grasshoppers) and a non-native herbivore that has become dominant (cattle) affect seasonal patterns of plant and soil elemental chemistry and aboveground plant biomass in a shortgrass prairie in the North American Northern Great Plains. To quantify herbivore effects, we sampled plants and soils across 4 months of the growing season in 15 grassland sites comprising five herbivore regimes with varying densities of bison, cattle, prairie dogs, and grasshoppers.
View Article and Find Full Text PDFEnviron Manage
September 2025
TEMSUS Research Group, Catholic University of Ávila, Ávila, Spain.
Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.
View Article and Find Full Text PDF