Adv Mater
August 2024
Alkaline zinc-iron flow batteries (AZIFBs) are well suited for energy storage because of their good safety, high cell voltage, and low cost. However, the occurrence of irreversible anodic parasitic reactions results in a diminished coulombic efficiency (CE), unbalanced charge state of catholyte/anolyte and subsequently, a poor cycling performance. Here, a universal CE compensation strategy centered around the oxygen evolution reaction (OER) on the cathodic side, is reported.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2024
Zinc-air batteries (ZABs) have attracted considerable attention for their high energy density, safety, low noise, and eco-friendliness. However, the capacity of mechanically rechargeable ZABs was limited by the cumbersome procedure for replacing the zinc anode, while electrically rechargeable ZABs suffer from issues including low depth of discharge, zinc dendrite and dead zinc formation, and sluggish oxygen evolution reaction, etc. To address these issues, we report a hybrid redox-mediated zinc-air fuel cell (HRM-ZAFC) utilizing 7,8-dihydroxyphenazine-2-sulfonic acid (DHPS) as the anolyte redox mediator, which shifts the zinc oxidation reaction from the electrode surface to a separate fuel tank.
View Article and Find Full Text PDFPurpose: Lung cancer is a major cause of cancer-related deaths, emphasizing the importance of early diagnosis. CT-guided percutaneous lung biopsy(CT-PLB) is a valuable method for diagnosing lung lesions, but multiple scans can elevate radiation exposure. This study aims to compare diagnostic efficacy and safety across different CT-PLB protocols.
View Article and Find Full Text PDFAqueous organic redox flow batteries (AORFBs) are a promising technology for large-scale electricity energy storage to realize efficient utilization of intermittent renewable energy. In particular, organic molecules are a class of metal-free compounds that consist of earth-abundant elements with good synthetic tunability, electrochemical reversibility and reaction rates. However, the short cycle lifetime and low capacity of AORFBs act as stumbling blocks for their practical deployment.
View Article and Find Full Text PDFEfficient and cost-effective technologies are highly desired to convert the tremendous amount of low-grade waste heat to electricity. Although the thermally regenerative electrochemical cycle (TREC) has attracted increasing attention recently, the unsatisfactory thermal-to-electrical conversion efficiency and low power density limit its practical applications. In this work, a thermosensitive Nernstian-potential-driven strategy in the TREC system is demonstrated to boost its temperature coefficient, power density, and thermoelectric conversion efficiency by rationally regulating the activities of redox couples at different temperatures.
View Article and Find Full Text PDFThe redox-targeting (RT) process or redox-mediated process, which provides great operation flexibility in circumventing the constraints intrinsically posed by the conventional electrochemical systems, is intriguing for various energy storage and conversion applications. Implementation of the RT reactions in redox-flow cells, which involves a close-loop electrochemical-chemical cycle between an electrolyte-borne redox mediator and an energy storage or conversion material, not only boosts the energy density of flow battery system, but also offers a versatile research platform applied to a wide variety of chemistries for different applications. Here, the recent progress of RT-based energy storage and conversion systems is summarized and great versatility of RT processes for various energy-related applications is demonstrated, particularly for large-scale energy storage, spatially decoupled water electrolysis, electrolytic N reduction, thermal-to-electrical conversion, spent battery material recycling, and more.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2021
This work presents a redox-mediated electrolytic nitrogen reduction reaction (RM-eNRR) using polyoxometalate (POM) as the electron and proton carrier which frees the TiO -based catalyst from the electrode and shifts the reduction of nitrogen to a reactor tank. The RM-eNRR process has achieved an ammonium production yield of 25.1 μg h or 5.
View Article and Find Full Text PDFRecycled concrete aggregate (RCA) is a typical construction and demolition (C&D) material generated in civil engineering activities and has been widely used as the coarse-grained filler added to sand for roadbed fillings. The effect of RCA content on the mechanical behavior of sand-RCA mixtures is complicated and still not fully understood. To explore the effect of RCA content on the macroscale and microscopic behavior of the sand-RCA mixtures with various RCA contents, laboratory direct shear tests and numerical simulations using the 3D discrete element method were performed.
View Article and Find Full Text PDFElectrolytic water splitting is an effective approach for H mass production. A conventional water electrolyzer concurrently generates H and O in neighboring electrode compartments separated by a membrane, which brings about compromised purity, energy efficiency, and system durability. On the basis of distinct redox electrochemistry, here, we report a system that enables the decoupling of both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) from the electrodes to two spatially separated catalyst bed reactors in alkaline solutions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2017
Silicon as the potential anode material for lithium-ion batteries suffers from huge volume change (up to 400%) during charging/discharging processes. Poor electrical conductivity of silicon also hinders its long-term cycling performance. Herein, we report a two-step ball milling method to prepare nanostructured P-doped Si/graphite composite.
View Article and Find Full Text PDFIn this work, a polypropylene frit with porous network structure (20 μm pole size) was first utilized as the mould of polymer monolithic material, poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-co-EDMA) monolith was synthesized within channels and macropores of the frit. A simple and sensitive solid-phase microextraction method based on polymer monolith frit coupled with high-performance liquid chromatography (HPLC) was established and applied to analysis of hexanal and heptanal in biological samples (human urine and serum). In the method, small molecule metabolites (aldehydes) in biological samples derivatized with 2,4-dinitrophenylhydrazine (DNPH), and the formed hydrazones were extracted simultaneously on the monolithic frit and thereafter ultrasound-assisted desorbed with acetonitrile as elution solvent.
View Article and Find Full Text PDFPLoS Biol
December 2004
Eight traditional subspecies of tiger (Panthera tigris),of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci.
View Article and Find Full Text PDFThe lateral-line sense organs in the skin of larval, juvenile and adult salamanders (Andrias davidianus) were examined by light and scanning electron microscopy. In addition to mechanoreceptive neuromasts, there are electroreceptive ampullary organs. Anatomically, the latter are similar to the ampullary organs of some other urodeles.
View Article and Find Full Text PDF