Artificial photosynthesis system to realize Solar overall water splitting has been regarded as sustainable and renewable solution for energy and environmental issues. While artificial photosynthesis system (efficiency of 12.4%) greatly exceeds efficiency of natural photosynthesis, yet such high efficiency needs multiple, 2 or more light absorbers to achieve, total photovoltage above 1440 mV.
View Article and Find Full Text PDFImproving both the efficiency and long-term stability of perovskite solar cells (PSCs) is critical for their commercial deployment. Despite the widespread use of spiro-OMeTAD as a hole-transporting material (HTM), its inhomogeneous doping behavior and susceptibility to moisture and heat have hindered its large-scale industrial implementation. Here, a family of spiro-phenothiazine-based HTMs (PTZ) is reported to address these drawbacks.
View Article and Find Full Text PDFThe electron transport layer (ETL) is a crucial component of perovskite solar cells (PSCs) as it greatly influences their photovoltaic performance. Among various currently used ETL materials, SnO₂ stands out due to its unique advantages, including low-temperature fabrication and rapid electron extraction capability and excellent energy match of its conduction band edge with that of the commonly used perovskite formulations. However, the currently employed SnO₂ layers contain surface defects, such as hydroxyl groups and oxygen vacancies that impair the desired growth of highly crystalline and defect less perovskite films during solution processing of n-i-p type PSCs reducing their power conversion efficiency (PCE) and stability.
View Article and Find Full Text PDFA-site cation mixing can enhance the photovoltaic performance of a wide-bandgap (WBG) perovskite, but rubidium (Rb) cation mixing generally forms a nonperovskite phase. We report that lattice strain locks Rb ions into the α-phase of the lattice of a triple-halide WBG perovskite, preventing phase segregation into a nonperovskite Rb-cesium-rich phase. This process cooperates with chloride accommodation and promotes halide homogenization across the entire film volume.
View Article and Find Full Text PDFSolution-processed α-FAPbI perovskite films frequently exhibit structural defects and impurities that impede the durable operation of solar cells. In this study, we introduced a conformationally stable, sterically bulky molecular passivator, bicyclo[1.1.
View Article and Find Full Text PDFMonolithic all-perovskite tandem solar cells present a promising approach for exceeding the efficiency limit of single-junction solar cells. However, the substantial open-circuit voltage loss in the wide-bandgap perovskite subcell hinders further improvements in power-conversion efficiency. Here we develop wide-bandgap perovskite films with improved (100) crystal orientation that suppress non-radiative recombination.
View Article and Find Full Text PDFCarbonyl-containing materials employed in state-of-the-art hybrid lead halide perovskite solar cells (PSCs) exhibit a strong structure-dependent electron donor effect that predominates in defect passivation. However, the impact of the molecular spatial conformation on the efficacy of carbonyl-containing passivators remains ambiguous, hindering the advancement of molecular design for passivating materials. Herein, we show that altering the spatial torsion angle of aromatic ketones from twisted to planar configurations, as seen in benzophenone (BP, 27.
View Article and Find Full Text PDFAccurately predicting the power conversion efficiency (PCE) in dye-sensitized solar cells (DSSCs) represents a crucial challenge, one that is pivotal for the high throughput rational design and screening of promising dye sensitizers. This study presents precise, predictive, and interpretable machine learning (ML) models specifically designed for Zn-porphyrin-sensitized solar cells. The model leverages theoretically computable, effective, and reusable molecular descriptors (MDs) to address this challenge.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Electron-withdrawing molecules (EWMs) have exhibited remarkable efficacy in boosting the performance of perovskite solar cells (PSCs). However, the underneath mechanisms governing their positive attributes remain inadequately understood. Herein, we conducted a comprehensive study on EWMs by comparing 2,2'-(2,5-cyclohexadiene-1,4-diylidene) bismalononitrile (TCNQ) and (2,3,5,6-tetrafluoro-2,5-cyclohexadiene-1,4-diylidene) dimalononitrile (F4TCNQ) employed at the perovskite/hole transport layer (HTL) interfaces.
View Article and Find Full Text PDFThe presence of defects at the interface between the perovskite film and the carrier transport layer poses significant challenges to the performance and stability of perovskite solar cells (PSCs). Addressing this issue, we introduce a dual host-guest (DHG) complexation strategy to modulate both the bulk and interfacial properties of FAPbI-rich PSCs. Through NMR spectroscopy, a synergistic effect of the dual treatment is observed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Host-guest complexation offers a promising approach for mitigating surface defects in perovskite solar cells (PSCs). Crown ethers are the most widely used macrocyclic hosts for complexing perovskite surfaces, yet their supramolecular interactions and functional implications require further understanding. Here we show that the dipole moment of crown ethers serves as an indicator of supramolecular interactions with both perovskites and precursor salts.
View Article and Find Full Text PDFBlack-phase formamidinium lead iodide (α-FAPbI) perovskites are the desired phase for photovoltaic applications, but water can trigger formation of photoinactive impurity phases such as δ-FAPbI. We show that the classic solvent system for perovskite fabrication exacerbates this reproducibility challenge. The conventional coordinative solvent dimethyl sulfoxide (DMSO) promoted δ-FAPbI formation under high relative humidity (RH) conditions because of its hygroscopic nature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Artificial photosynthesis is an effective way of converting CO into fuel and high value-added chemicals. However, the sluggish interfacial electron transfer and adsorption of CO at the catalyst surface strongly hamper the activity and selectivity of CO reduction. Here, we report a photocathode attaching zeolitic imidazolate framework-8 (ZIF-8) onto a ZnTe surface to mimic an aquatic leaf featuring stoma and chlorophyll for efficient photoelectrochemical conversion of CO into CO.
View Article and Find Full Text PDFHybrid metal halide perovskites have demonstrated remarkable performances in modern photovoltaics, although their stabilities remain limited. We assess the capacity to advance their properties by relying on interfacial modulators featuring helical chirality based on ,-(1-methylene-3-methyl-imidazolium)[6]helicene iodides. We investigate their characteristics, demonstrating comparable charge injection for enantiomers and the racemic mixture.
View Article and Find Full Text PDFEfficient and robust n-i-p perovskite solar cells necessitate superior organic hole-transport materials with both mechanical and electronic prowess. Deciphering the structure-property relationship of these materials is crucial for practical perovskite solar cell applications. Through direct arylation, two high glass transition temperature molecular semiconductors, DBC-ETPA (202 °C) and TPE-ETPA (180 °C) are synthesized, using dibenzo[g,p]chrysene (DBC) and 1,1,2,2-tetraphenylethene (TPE) tetrabromides with triphenylene-ethylenedioxythiophene-dimethoxytriphenylamine (ETPA).
View Article and Find Full Text PDFJ Am Chem Soc
December 2023
Photoelectrochemical carbon dioxide reduction (PEC-COR) represents a promising approach for producing renewable fuels and chemicals using solar energy. However, attaining even modest solar-to-fuel (STF) conversion efficiency often necessitates the use of costly semiconductors and noble-metal catalysts. Herein, we present a CuO/GaO/TiO photocathode modified with Sn/SnO catalysts through a simple photoelectrodeposition method.
View Article and Find Full Text PDFInverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates.
View Article and Find Full Text PDFHigh-performance perovskite solar cells (PSCs) typically require interfacial passivation, yet this is challenging for the buried interface, owing to the dissolution of passivation agents during the deposition of perovskites. Here, this limitation is overcome with in situ buried-interface passivation-achieved via directly adding a cyanoacrylic-acid-based molecular additive, namely BT-T, into the perovskite precursor solution. Classical and ab initio molecular dynamics simulations reveal that BT-T spontaneously may self-assemble at the buried interface during the formation of the perovskite layer on a nickel oxide hole-transporting layer.
View Article and Find Full Text PDFLead halide perovskite light-emitting diodes (PeLEDs) have demonstrated remarkable optoelectronic performance. However, there are potential toxicity issues with lead and removing lead from the best-performing PeLEDs-without compromising their high external quantum efficiencies-remains a challenge. Here we report a tautomeric-mixture-coordination-induced electron localization strategy to stabilize the lead-free tin perovskite TEASnI (TEAI is 2-thiopheneethylammonium iodide) by incorporating cyanuric acid.
View Article and Find Full Text PDFNat Rev Chem
September 2023
There is an ongoing global effort to advance emerging perovskite solar cells (PSCs), and many of these endeavours are focused on developing new compositions, processing methods and passivation strategies. In particular, the use of passivators to reduce the defects in perovskite materials has been demonstrated to be an effective approach for enhancing the photovoltaic performance and long-term stability of PSCs. Organic passivators have received increasing attention since the late 2010s as their structures and properties can readily be modified.
View Article and Find Full Text PDFPerovskite solar cells (PSCs) consisting of interfacial two- and three-dimensional heterostructures that incorporate ammonium ligand intercalation have enabled rapid progress toward the goal of uniting performance with stability. However, as the field continues to seek ever-higher durability, additional tools that avoid progressive ligand intercalation are needed to minimize degradation at high temperatures. We used ammonium ligands that are nonreactive with the bulk of perovskites and investigated a library that varies ligand molecular structure systematically.
View Article and Find Full Text PDFMetal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) because of their easy-to-adjust bandgaps, which can be designed to cover the spectrum of any artificial light source. However, the serious non-radiative carrier recombination under low light illumination restrains the application of perovskite-based IPVs (PIPVs). Herein, polar molecules of amino naphthalene sulfonates are employed to functionalize the TiO substrate, anchoring the CsPbI perovskite crystal grains with a strong ion-dipole interaction between the molecule-level polar interlayer and the ionic perovskite film.
View Article and Find Full Text PDFThe conversion of carbon dioxide to value-added products using renewable electricity would potentially help to address current climate concerns. The electrochemical reduction of carbon dioxide to propylene, a critical feedstock, requires multiple C-C coupling steps with the transfer of 18 electrons per propylene molecule, and hence is kinetically sluggish. Here we present the electrosynthesis of propylene from carbon dioxide on copper nanocrystals with a peak geometric current density of -5.
View Article and Find Full Text PDFThe defects located at the interfaces and grain boundaries (GBs) of perovskite films are detrimental to the photovoltaic performance and stability of perovskite solar cells. Manipulating the perovskite crystallization process and tailoring the interfaces with molecular passivators are the main effective strategies to mitigate performance loss and instability. Herein, a new strategy is reported to manipulate the crystallization process of FAPbI -rich perovskite by incorporating a small amount of alkali-functionalized polymers into the antisolvent solution.
View Article and Find Full Text PDF