Publications by authors named "Sebastien Villeger"

Assessing the escalating biodiversity crisis, driven by climate change, habitat destruction, and exploitation, necessitates efficient monitoring strategies to assess species presence and abundance across diverse habitats. Video-based surveys using remote cameras are a promising, non-invasive way to collect valuable data in various environments. Yet, the analysis of recorded videos remains challenging due to time and expertise constraints.

View Article and Find Full Text PDF

Coastal and marine ecosystems are increasingly impacted by anthropogenic activities that act cumulatively with environmental changes, eroding biodiversity and its essential role in many ecosystem functions, including biomass production, which is vital for livelihood and food security. Understanding the links between socio-environmental factors, biodiversity, and fish biomass is essential for sustainable development. In this study, we use Structural Equation Models (SEM) to test, estimate, and explore complex relationships between these co-variates, distinguishing direct and indirect responses on five key coastal ecosystems across three ecoregions.

View Article and Find Full Text PDF

Understanding how environmental and human pressures impact the temporal stability of fish community biomass on shallow reefs is essential for effective conservation and management. These pressures influence community stability directly, by affecting species' stability and asynchrony in species' fluctuations. However, their effects may also indirectly depend on the functional traits of the species composing the community, which remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers discovered fifteen large breeding colonies of picarels (Spicara smaris), a small fish species, along the East coast of Corsica during video transects in spring 2021.
  • These colonies occupy over 134.6 hectares, with nests averaging 55 cm in diameter, and house more than 18 million nests, each tended by a male fish.
  • The presence of these nests supports diverse marine life and highlights the picarel's role as an ecosystem engineer, emphasizing the need for more studies and protection of the area during the breeding season.
View Article and Find Full Text PDF
Article Synopsis
  • The study highlights that there is a lack of data on marine fish species' extinction risks, which hampers effective conservation planning, particularly for teleost fishes.
  • By using machine learning algorithms, researchers predicted an increased IUCN extinction risk for marine fishes from 2.5% to 12.7%, identifying specific traits like small geographic range and low growth rate as indicators of threat.
  • The research proposes integrating these predictions into conservation strategies, emphasizing the importance of prioritizing marine protected areas, especially in less diverse regions that are still crucial for vulnerable species.
View Article and Find Full Text PDF

The influential concept of the rare biosphere in microbial ecology has underscored the importance of taxa occurring at low abundances yet potentially playing key roles in communities and ecosystems. Here, we refocus the concept of rare biosphere through a functional trait-based lens and provide a framework to characterize microbial functional rarity, a combination of numerical scarcity across space or time and trait distinctiveness. We demonstrate how this novel interpretation of the rare biosphere, rooted in microbial functions, can enhance our mechanistic understanding of microbial community structure.

View Article and Find Full Text PDF

Global environmental change drives diversity loss and shifts in community structure. A key challenge is to better understand the impacts on ecosystem function and to connect species and trait diversity of assemblages with ecosystem properties that are in turn linked to ecosystem functioning. Here we quantify shifts in species composition and trait diversity associated with ocean acidification (OA) by using field measurements at marine CO vent systems spanning four reef habitats across different depths in a temperate coastal ecosystem.

View Article and Find Full Text PDF

Organismal metabolic rates (MRs) are the basis of energy and nutrient fluxes through ecosystems. In the marine realm, fishes are some of the most prominent consumers. However, their metabolic demand in the wild (field MR [FMR]) is poorly documented, because it is challenging to measure directly.

View Article and Find Full Text PDF

Biological invasion is one of the main components of global changes in aquatic ecosystems. Unraveling how establishment in novel environments affects key biological features of animals is a key step towards understanding invasion. Gut microbiome of herbivorous animals is important for host health but has been scarcely assessed in invasive species.

View Article and Find Full Text PDF

Direct and indirect impacts by invasive animals on plants and other animals through predation and competition have been evidenced in many ecosystems. For instance, the rabbitfish Siganus rivulatus, originating from the Red Sea, is now the most abundant species in costal habitats of South-Eastern Mediterranean Sea where it overgrazes algae. However, little is known about its impacts on microbes through release of metabolic wastes and feces.

View Article and Find Full Text PDF

Effective solutions to the ongoing "coral reef crisis" will remain limited until the underlying drivers of coral reef degradation are better understood. Here, we conduct a global-scale study of how four key metrics of ecosystem states and processes on coral reefs (top predator presence, reef fish biomass, trait diversity, and parrotfish scraping potential) are explained by 11 indicators based on key human-environment theories from the social sciences. Our global analysis of >1,500 reefs reveals three key findings.

View Article and Find Full Text PDF

Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass.

View Article and Find Full Text PDF

Advances in the analysis of amplicon sequence datasets have introduced a methodological shift in how research teams investigate microbial biodiversity, away from sequence identity-based clustering (producing Operational Taxonomic Units, OTUs) to denoising methods (producing amplicon sequence variants, ASVs). While denoising methods have several inherent properties that make them desirable compared to clustering-based methods, questions remain as to the influence that these pipelines have on the ecological patterns being assessed, especially when compared to other methodological choices made when processing data (e.g.

View Article and Find Full Text PDF

The relative importance of evolutionary history and ecology for traits that drive ecosystem processes is poorly understood. Consumers are essential drivers of nutrient cycling on coral reefs, and thus ecosystem productivity. We use nine consumer "chemical traits" associated with nutrient cycling, collected from 1,572 individual coral reef fishes (178 species spanning 41 families) in two biogeographic regions, the Caribbean and Polynesia, to quantify the relative importance of phylogenetic history and ecological context as drivers of chemical trait variation on coral reefs.

View Article and Find Full Text PDF
Article Synopsis
  • Coral reefs are increasingly being replaced by macroalgae due to climate change, altering the ecosystem dynamics.
  • A study analyzing gut bacteria in 99 fish across 36 species in Seychelles found that while fish gut diversity remained unchanged, the composition of bacteria varied significantly, especially in herbivorous fish.
  • The shift to macroalgae led to an increase in fermentative bacteria, suggesting that these ecosystem changes could impact overall reef health and function through microbial processes.
View Article and Find Full Text PDF

Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing.

View Article and Find Full Text PDF

Trait-based ecology aims to understand the processes that generate the overarching diversity of organismal traits and their influence on ecosystem functioning. Achieving this goal requires simplifying this complexity in synthetic axes defining a trait space and to cluster species based on their traits while identifying those with unique combinations of traits. However, so far, we know little about the dimensionality, the robustness to trait omission and the structure of these trait spaces.

View Article and Find Full Text PDF

Species' traits, rather than taxonomic identities, determine community assembly and ecosystem functioning, yet biogeographic patterns have been far less studied for traits. While both environmental conditions and evolutionary history shape trait biogeography, their relative contributions are largely unknown for most organisms. Here, we explore the global biogeography of reef fish traits for 2,786 species from 89 ecoregions spanning eight marine realms with contrasting environmental conditions and evolutionary histories.

View Article and Find Full Text PDF

Freshwater fish represent one-fourth of the world's vertebrates and provide irreplaceable goods and services but are increasingly affected by human activities. A new index, Cumulative Change in Biodiversity Facets, revealed marked changes in biodiversity in >50% of the world's rivers covering >40% of the world's continental surface and >37% of the world's river length, whereas <14% of the world's surface and river length remain least impacted. Present-day rivers are more similar to each other and have more fish species with more diverse morphologies and longer evolutionary legacies.

View Article and Find Full Text PDF

Processing data from surveys using photos or videos remains a major bottleneck in ecology. Deep Learning Algorithms (DLAs) have been increasingly used to automatically identify organisms on images. However, despite recent advances, it remains difficult to control the error rate of such methods.

View Article and Find Full Text PDF

Coral reefs host hundreds of thousands of animal species that are increasingly threatened by anthropogenic disturbances. These animals host microbial communities at their surface, playing crucial roles for their fitness. However, the diversity of such microbiomes is mostly described in a few coral species and still poorly defined in other invertebrates and vertebrates.

View Article and Find Full Text PDF

The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met.

View Article and Find Full Text PDF