Publications by authors named "Virginie Marques"

Islands have been used as model systems to study ecological and evolutionary processes, and they provide an ideal set-up for validating new biodiversity monitoring methods. The application of environmental DNA metabarcoding for monitoring marine biodiversity requires an understanding of the spatial scale of the eDNA signal, which is best tested in island systems. Here, we investigated the variation in Actinopterygii and Elasmobranchii species composition recovered from eDNA metabarcoding along a gradient of distance-to-reef in four of the five French Scattered Islands in the Western Indian Ocean.

View Article and Find Full Text PDF

Spatial and temporal monitoring of species threatened with extinction is of critical importance for conservation and ecosystem management. In the Mediterranean coast, the fan mussel () is listed as critically endangered after suffering from a mass mortality event since 2016, leading to 100% mortality in most marine populations. Conventional monitoring for this macroinvertebrate is done using scuba, which is challenging in dense meadows or with low visibility.

View Article and Find Full Text PDF

The bathymetric and geographical distribution of marine species represent a key information in biodiversity conservation. Yet, deep-sea ecosystems are among the least explored on Earth and are increasingly impacted by human activities. Environmental DNA (eDNA) metabarcoding has emerged as a promising method to study fish biodiversity but applications to the deep-sea are still scarce.

View Article and Find Full Text PDF

Increasing speed and magnitude of global change threaten the world's biodiversity and particularly coral reef fishes. A better understanding of large-scale patterns and processes on coral reefs is essential to prevent fish biodiversity decline but it requires new monitoring approaches. Here, we use environmental DNA metabarcoding to reconstruct well-known patterns of fish biodiversity on coral reefs and uncover hidden patterns on these highly diverse and threatened ecosystems.

View Article and Find Full Text PDF

Quantifying fish species diversity in rich tropical marine environments remains challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face this challenge through the filtering, amplification, and sequencing of DNA traces from water samples. However, because eDNA concentration is low in marine environments, the reliability of eDNA to detect species diversity can be limited.

View Article and Find Full Text PDF

Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing.

View Article and Find Full Text PDF

Monitoring large marine mammals is challenging due to their low abundances in general, an ability to move over large distances and wide geographical range sizes.The distribution of the pygmy () and dwarf () sperm whales is informed by relatively rare sightings, which does not permit accurate estimates of their distribution ranges. Hence, their conservation status has long remained Data Deficient (DD) in the Red list of the International Union for Conservation of Nature (IUCN), which prevent appropriate conservation measures.

View Article and Find Full Text PDF

Environmental DNA (eDNA) has the potential to provide more comprehensive biodiversity assessments, particularly for vertebrates in species-rich regions. However, this method requires the completeness of a reference database (i.e.

View Article and Find Full Text PDF

Long-distance (>40-km) dispersal from marine reserves is poorly documented; yet, it can provide essential benefits such as seeding fished areas or connecting marine reserves into networks. From a meta-analysis, we suggest that the spatial scale of marine connectivity is underestimated due to the limited geographic extent of sampling designs. We also found that the largest marine reserves (>1000km) are the most isolated.

View Article and Find Full Text PDF

Limited resources in the environment prevent individuals from simultaneously maximizing all life-history traits, resulting in trade-offs. In particular, the cost of reproduction is well known to negatively affect energy investment in growth and maintenance. Here, we investigated these trade-offs during contrasting periods of high versus low fish size and body condition (before/after 2008) in the Gulf of Lions.

View Article and Find Full Text PDF