Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Islands have been used as model systems to study ecological and evolutionary processes, and they provide an ideal set-up for validating new biodiversity monitoring methods. The application of environmental DNA metabarcoding for monitoring marine biodiversity requires an understanding of the spatial scale of the eDNA signal, which is best tested in island systems. Here, we investigated the variation in Actinopterygii and Elasmobranchii species composition recovered from eDNA metabarcoding along a gradient of distance-to-reef in four of the five French Scattered Islands in the Western Indian Ocean. We collected surface water samples at an increasing distance from reefs (0 m, 250 m, 500 m, 750 m). We used a metabarcoding protocol based on the 'teleo' primers to target marine reef fishes and classified taxa according to their habitat types (benthic or pelagic). We investigated the effect of distance-to-reef on β diversity variation using generalised linear mixed models and estimated species-specific distance-to-reef effects using a model-based approach for community data. Environmental DNA metabarcoding analyses recovered distinct fish species compositions across the four inventoried islands and variations along the distance-to-reef gradient. The analysis of βdiversity variation showed significant taxa turnover between the eDNA samples on and away from the reefs. In agreement with a spatially localised signal from eDNA, benthic species were distributed closer to the reef than pelagic ones. Our findings demonstrate that the combination of eDNA inventories and spatial modelling can provide insights into species habitat preferences related to distance-to-reef gradients at a small scale. As such, eDNA can not only recover large compositional differences among islands but also help understand habitat selection and distribution of marine species at a finer spatial scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099785PMC
http://dx.doi.org/10.1002/ece3.11337DOI Listing

Publication Analysis

Top Keywords

environmental dna
12
indian ocean
8
dna metabarcoding
8
spatial scale
8
scale edna
8
edna
6
islands
5
species
5
distance-to-reef
5
dna recovers
4

Similar Publications

Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults.

View Article and Find Full Text PDF

Aptamers are single-stranded DNA or RNA oligonucleotides that can bind to specific target molecules with high affinity and specificity. Fluorescence DNA aptamer-based biosensors (aptasensors) have emerged as powerful analytical tools for detecting diverse targets, ranging from food contaminants to disease biomarkers, owing to their exceptional specificity, high sensitivity, and cost-effectiveness. This review systematically summarizes recent advances in the design strategies of fluorescence aptasensors, focusing on three key approaches: (1) fluorescence resonance energy transfer-based signal amplification, (2) nanomaterial-enhanced probes, and (3) multi-channel platforms for simultaneous detection.

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF

Phlebotomine sand flies are known vectors of Leishmania spp. to mammals, but also may transmit Sauroleishmania, and Trypanosoma spp. to reptiles and amphibians.

View Article and Find Full Text PDF

Glyphosate-based herbicides are the most widely applied pesticides worldwide and have been implicated in the development of certain hematologic malignancies; however, the underlying biological mechanisms are not well-understood. High lifetime use of glyphosate-based herbicides, hereafter referred to as glyphosate, was previously associated with mosaic loss of chromosome Y (mLOY), a biomarker of genomic instability potentially linked to cancer and immune dysregulation, in circulating blood of male farmers from a subcohort of the Agricultural Health Study (AHS). Here, we further investigated the association between glyphosate use and mLOY using buccal-derived DNA among 1,868 male pesticide applicators in an independent AHS study.

View Article and Find Full Text PDF