Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health. Using Suffolk sheep, the study involved two cohorts: one exposed to prenatal-T and the other to prenatal-BPA. Whole genome bisulfite sequencing was employed to map DNA methylation across over 22 million CpG sites. Regions with p-value<10 and a magnitude of difference of at least 5% methylation between groups were considered differentially methylated. Results demonstrated substantial differential methylation in the liver tissues due to both treatments, with prenatal-T causing unique epigenetic modifications distinct from those induced by prenatal-BPA. Specifically, prenatal-T treatment resulted in 53 differentially methylated regions (DMRs), of which 31 were located in gene regions, including exons. Prenatal-BPA exposure led to 32 DMRs, with 22 associated with gene regions. These modifications were associated with genes governing lipid and glucose metabolism, potentially underlying the observed metabolic disruptions such as insulin resistance and dyslipidemia. Pathway analysis revealed that genes differentially methylated due to prenatal-T were involved in cellular organization, while those affected by prenatal-BPA were enriched in signal regulation pathways. The findings underscore how prenatal exposure to steroid excess and steroid-mimics influence epigenetic landscapes, contributing to metabolic disease programming.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2025.112655DOI Listing

Publication Analysis

Top Keywords

developmental programming
4
programming differing
4
differing impact
4
impact prenatal
4
prenatal testosterone
4
testosterone prenatal
4
prenatal bisphenol-a
4
bisphenol-a -treatment
4
-treatment hepatic
4
hepatic methylome
4

Similar Publications

Compared to sun-exposed melanomas, acral melanomas are genetically diverse and occur in areas with low sun exposure and high mechanical loads. During metastatic growth, melanomas invade from the epidermis to the dermis layers through dense tumor stroma and are exposed to fibrillar collagen architectures and mechanical stresses. However, the role of these signals during acral melanoma pathogenesis is not well understood.

View Article and Find Full Text PDF

Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults.

View Article and Find Full Text PDF

Human cardiac organoids for disease modeling and drug discovery.

Trends Mol Med

September 2025

Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Cancer Institute, Cedars-Sinai Medica

Cardiac organoids are 3D self-assembling structures that recapitulate some of the functional, structural, and cellular aspects of the developing heart. Cardiac organoid modeling has overcome many of the limitations of current cardiac modeling systems by providing a human-relevant, multicellular, spatially advanced model that can replicate early key developmental stages of human cardiogenesis. Recent advancements in cardiac organoid modeling have enabled further understanding of cardiogenesis, cardiovascular disease, and drug-induced cardiotoxicity.

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF

Chemogenetic tuning reveals optimal MAPK signaling for cell-fate programming.

Cell Rep

September 2025

Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA. Electronic address:

Cell states evolve through the combined activity of signaling pathways and gene networks. While transcription factors can direct cell fate, these factors rely on a receptive cell state. How signaling levels contribute to the emergence of receptive cell states remains poorly defined.

View Article and Find Full Text PDF