Publications by authors named "Brian C Weeks"

The spatial and temporal dynamics of biodiversity are shaped by complex interactions among species characteristics and geographic processes. A key example is the effect of dispersal on geographical range expansion and gene flow, both of which may determine speciation rates. In this study, we constructed a time-calibrated phylogeny of over 9,000 bird species and leveraged extensive data on avian traits and spatial occurrence to explore the connections between dispersal, biogeography, and speciation.

View Article and Find Full Text PDF

Through the industrial era, pollutants have been unevenly distributed in the environment, disproportionately impacting disenfranchised communities. Redressing the unequal distribution of environmental pollution is thus a question of environmental justice and public health that requires policy solutions. However, data on pollutants for many locations and time periods are limited because environmental monitoring is largely reactive-i.

View Article and Find Full Text PDF

Large comparative datasets of avian functional traits have been used to address a wide range of questions in ecology and evolution. To date, this work has been constrained by the limited availability of skeletal trait datasets that include extensive inter- and intra-specific sampling. We use computer vision to identify and measure bones from photographs of museum skeletal specimens to assemble an extensive dataset of functionally important skeletal elements in birds.

View Article and Find Full Text PDF

Understanding animal movement is at the core of ecology, evolution and conservation science. Big data approaches for animal tracking have facilitated impactful synthesis research on spatial biology and behavior in ecologically important and human-impacted regions. Similarly, databases of animal traits (e.

View Article and Find Full Text PDF

Mariculture is one of the fastest growing global markets. Although it has potential to improve livelihoods and facilitate economic growth, it can negatively impact marine biodiversity. Here we estimate local cumulative environmental impacts from current and future (2050) mariculture production on marine biodiversity (20,013 marine fauna), while accounting for species range shifts under climate change.

View Article and Find Full Text PDF

Recent widespread reductions in body size across species have been linked to increasing temperatures; simultaneous increases in wing length relative to body size have been broadly observed but remain unexplained. Size and shape may change independently of one another, or these morphological shifts may be linked, with body size mediating or directly driving the degree to which shape changes. Using hierarchical Bayesian models and a morphological time series of 27 366 specimens from five North American migratory passerine bird species, we tested the roles that climate and body size have played in shifting wing length allometry over four decades.

View Article and Find Full Text PDF

Background: Rapid morphological change is emerging as a consequence of climate change in many systems. It is intuitive to hypothesize that temporal morphological trends are driven by the same selective pressures that have established well-known ecogeographic patterns over spatial environmental gradients (e.g.

View Article and Find Full Text PDF

As biodiversity loss continues, targeted conservation interventions are increasingly necessary. Stemming species loss requires mechanistic understanding of the processes governing population dynamics. However, this information is unavailable for most animals because it requires data that are difficult to collect using traditional methods.

View Article and Find Full Text PDF

Understanding the extent to which people and wildlife overlap in space and time is critical for the conservation of biodiversity and ecological services. Yet, how global change will reshape the future of human-wildlife overlap has not been assessed. We show that the potential spatial overlap of global human populations and 22,374 terrestrial vertebrate species will increase across ~56.

View Article and Find Full Text PDF

Variation in evolutionary rates among species is a defining characteristic of the tree of life and may be an important predictor of species' capacities to adapt to rapid environmental change. It is broadly assumed that generation length is an important determinant of microevolutionary rates, and body size is often used as a proxy for generation length. However, body size has myriad biological correlates that could affect evolutionary rates independently from generation length.

View Article and Find Full Text PDF

As temperatures increase, there is growing evidence that species across much of the tree of life are getting smaller. These climate change-driven size reductions are often interpreted as a temporal analogue of the observation that individuals within a species tend to be smaller in the warmer parts of the species' range. For ectotherms, there has been a broad effort to understand the role of developmental plasticity in temperature-size relationships, but in endotherms, this mechanism has received relatively little attention in favour of selection-based explanations.

View Article and Find Full Text PDF
Article Synopsis
  • - AVONET is a comprehensive dataset providing functional traits for all bird species, featuring data on ecological variables, morphological traits, and species' range sizes from over 90,000 individuals across 181 countries.
  • - The dataset includes both raw measurements and summarized species averages in multiple taxonomic formats, enabling integration with phylogenies, geographical maps, and conservation status information.
  • - AVONET aims to enhance research in evolutionary biology and ecology by offering detailed insights into biodiversity, facilitating the testing of theories and models related to global change.
View Article and Find Full Text PDF

Increases in biodiversity often lead to greater, and less variable, levels of ecosystem functioning. However, whether species are less likely to go extinct in more diverse ecosystems is unclear. We use comprehensive estimates of avian taxonomic, phylogenetic and functional diversity to characterise the global relationship between multiple dimensions of diversity and extinction risk in birds, focusing on contemporary threat status and latent extinction risk.

View Article and Find Full Text PDF

The relative importance of evolutionary history and ecology for traits that drive ecosystem processes is poorly understood. Consumers are essential drivers of nutrient cycling on coral reefs, and thus ecosystem productivity. We use nine consumer "chemical traits" associated with nutrient cycling, collected from 1,572 individual coral reef fishes (178 species spanning 41 families) in two biogeographic regions, the Caribbean and Polynesia, to quantify the relative importance of phylogenetic history and ecological context as drivers of chemical trait variation on coral reefs.

View Article and Find Full Text PDF

Advancements in phenology and changes in morphology, including body size reductions, are among the most commonly described responses to globally warming temperatures. Although these dynamics are routinely explored independently, the relationships among them and how their interactions facilitate or constrain adaptation to climate change are poorly understood. In migratory species, advancing phenology may impose selection on morphological traits to increase migration speed.

View Article and Find Full Text PDF

Plant diversity has a positive influence on the number of ecosystem functions maintained simultaneously by a community, or multifunctionality. While the presence of multiple trophic levels beyond plants, or trophic complexity, affects individual functions, the effect of trophic complexity on the diversity-multifunctionality relationship is less well known. To address this issue, we tested whether the independent or simultaneous manipulation of both plant diversity and trophic complexity impacted multifunctionality using a mesocosm experiment from Cedar Creek, Minnesota, USA.

View Article and Find Full Text PDF

Because a population's ability to respond to rapid change is dictated by standing genetic variation, we can better predict a population's long-term viability by estimating and then comparing adult census size () and effective population size ( ). However, most studies only measure or , which can be misleading. Using a combination of field and genomic sequence data, we here estimate and compare and in two range-restricted endemics of the Solomon Islands.

View Article and Find Full Text PDF

Understanding how co-occurring species divide ecological space is a central issue in ecology. Functional traits have the potential to serve as a means for quantitatively assessing niche partitioning by different species based on their ecological attributes, such as morphology, behavior, or trophic habit. This enables testing ecological and evolutionary questions using functional traits at spatio-temporal scales that are not feasible using traditional field methods.

View Article and Find Full Text PDF

Animals have diversified into a bewildering variety of morphological forms exploiting a complex configuration of trophic niches. Their morphological diversity is widely used as an index of ecosystem function, but the extent to which animal traits predict trophic niches and associated ecological processes is unclear. Here we use the measurements of nine key morphological traits for >99% bird species to show that avian trophic diversity is described by a trait space with four dimensions.

View Article and Find Full Text PDF

Increasing temperatures associated with climate change are predicted to cause reductions in body size, a key determinant of animal physiology and ecology. Using a four-decade specimen series of 70 716 individuals of 52 North American migratory bird species, we demonstrate that increasing annual summer temperature over the 40-year period predicts consistent reductions in body size across these diverse taxa. Concurrently, wing length - an index of body shape that impacts numerous aspects of avian ecology and behaviour - has consistently increased across species.

View Article and Find Full Text PDF

Understanding interactions between biota and the built environment is increasingly important as human modification of the landscape expands in extent and intensity. For migratory birds, collisions with lighted structures are a major cause of mortality, but the mechanisms behind these collisions are poorly understood. Using 40 years of collision records of passerine birds, we investigated the importance of species' behavioural ecologies in predicting rates of building collisions during nocturnal migration through Chicago, IL and Cleveland, OH, USA.

View Article and Find Full Text PDF

This paper advances an hypothesis that the primary adaptive driver of seasonal migration is maintenance of site fidelity to familiar breeding locations. We argue that seasonal migration is therefore principally an adaptation for geographic persistence when confronted with seasonality - analogous to hibernation, freeze tolerance, or other organismal adaptations to cyclically fluctuating environments. These ideas stand in contrast to traditional views that bird migration evolved as an adaptive dispersal strategy for exploiting new breeding areas and avoiding competitors.

View Article and Find Full Text PDF

Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g.

View Article and Find Full Text PDF

Biodiversity is widely acknowledged to influence the magnitude and stability of a large array of ecosystem properties, with biodiverse systems thought to be more functionally robust. As such, diverse systems may be safer harbors for vulnerable species, resulting in a positive association between biodiversity and the collective vulnerability of species in an assemblage, or "assemblage vulnerability." We find that, for 35 islands across Northern Melanesia, bird assemblage vulnerability and biodiversity are positively associated.

View Article and Find Full Text PDF

Different models of speciation predict contrasting patterns in the relationship between the dispersal ability of lineages and their diversification rates. This relationship is expected to be negative in isolation-limited models and positive in founder-event models. In addition, the combination of negative and positive effects of dispersal on speciation can result in higher diversification rates at intermediate levels of dispersal ability.

View Article and Find Full Text PDF