Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The relative importance of evolutionary history and ecology for traits that drive ecosystem processes is poorly understood. Consumers are essential drivers of nutrient cycling on coral reefs, and thus ecosystem productivity. We use nine consumer "chemical traits" associated with nutrient cycling, collected from 1,572 individual coral reef fishes (178 species spanning 41 families) in two biogeographic regions, the Caribbean and Polynesia, to quantify the relative importance of phylogenetic history and ecological context as drivers of chemical trait variation on coral reefs. We find: (1) phylogenetic relatedness is the best predictor of all chemical traits, substantially outweighing the importance of ecological factors thought to be key drivers of these traits, (2) phylogenetic conservatism in chemical traits is greater in the Caribbean than Polynesia, where our data suggests that ecological forces have a greater influence on chemical trait variation, and (3) differences in chemical traits between regions can be explained by differences in nutrient limitation associated with the geologic context of our study locations. Our study provides multiple lines of evidence that phylogeny is a critical determinant of contemporary nutrient dynamics on coral reefs. More broadly our findings highlight the utility of evolutionary history to improve prediction in ecosystem ecology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440548PMC
http://dx.doi.org/10.1038/s41467-021-25528-0DOI Listing

Publication Analysis

Top Keywords

coral reefs
12
chemical traits
12
phylogenetic conservatism
8
nutrient dynamics
8
dynamics coral
8
coral reef
8
reef fishes
8
evolutionary history
8
nutrient cycling
8
caribbean polynesia
8

Similar Publications

Boat noise alters behaviour of two coral reef macroinvertebrates, Lambis lambis and Tridacna maxima.

Mar Pollut Bull

September 2025

Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Boat noise has been shown to distract and cause harm to many marine organisms. Most of the study effort has focused on fish & marine mammals, even though invertebrates represent over 92 % of all marine life. The few studies conducted on invertebrates have demonstrated clear negative effects of anthropogenic noise pollution.

View Article and Find Full Text PDF

Background: The damselfishes, an extremely diverse group of herbivorous fish, stands out as an important and ubiquitous ecological component of coral reefs. In the Western South Atlantic, the genus Stegastes is the most representative, whose evolutionary paths and taxonomic status of insular endemic species have been better evaluated. To clarify the karyotypic evolution involved in the diversification of this group, cytogenetic analyses were performed in four nominal species (S.

View Article and Find Full Text PDF

Many cnidarian animals possess multiple opsins, including a type known as cnidopsin, which is found throughout the phylum Cnidaria and is divided into several subgroups. Previous studies have suggested that cnidopsins from jellyfish and coral can light-dependently elevate intracellular cAMP levels, likely via activation of Gs-type G protein in cultured cells. However, their spectroscopic properties remain largely unclear, with the exception of jellyfish opsins.

View Article and Find Full Text PDF

Coral reefs are threatened worldwide from unprecedented increases in ocean temperatures, resulting in corals gradually living closer to their maximum thermal threshold. With ocean temperatures expected to warm up to 3 °C by 2100, understanding the effects of chronic elevated baseline temperature is important in determining the thermal physiological limits of corals and developing realistic restoration strategies to ensure the future of coral reefs. Here, we tested the effects of 26 weeks (i.

View Article and Find Full Text PDF

Starvation Influences the Microbiota in the Stomach of the Corallivorous Crown-of-Thorns Starfish.

Biology (Basel)

August 2025

CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

The crown-of-thorns starfish (CoTS, spp.), is responsible for a considerable amount of coral loss in the tropical Indo-Pacific region. After decimating coral populations through predation, it is expected that CoTS will face food scarcity before coral recovery.

View Article and Find Full Text PDF