98%
921
2 minutes
20
Biological invasion is one of the main components of global changes in aquatic ecosystems. Unraveling how establishment in novel environments affects key biological features of animals is a key step towards understanding invasion. Gut microbiome of herbivorous animals is important for host health but has been scarcely assessed in invasive species. Here, we characterized the gut microbiome of two invasive marine herbivorous fishes (Siganus rivulatus and Siganus luridus) in their native (Red Sea) and invaded (Mediterranean Sea) ranges. The taxonomic and phylogenetic diversity of the microbiome increased as the fishes move away from the native range and its structure became increasingly different from the native microbiome. These shifts resulted in homogenization of the microbiome in the invaded range, within and between the two species. The shift in microbial diversity was associated with changes in its functions related with the metabolism of short-chain fatty acids. Altogether, our results suggest that the environmental conditions encountered by Siganidae during their expansion in Mediterranean ecosystems strongly modifies the composition of their gut microbiome along with its putative functions. Further studies should pursue to identify the precise determinants of these modifications (e.g. changes in host diet or behavior, genetic differentiation) and whether they participate in the ecological success of these species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167558 | PMC |
http://dx.doi.org/10.1186/s42523-022-00181-0 | DOI Listing |
Arch Microbiol
September 2025
School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.
The inhibitory effects of Lactiplantibacillus plantarum on inflammatory responses are known, but its action mechanisms in oxidative stress, immunomodulation, and intestinal homeostasis remain of interest. Accordingly, we investigated the protective effects of Lactiplantibacillus plantarum SCS2 (L. plantarum SCS2) against sodium dextran sulfate (DSS)-induced colitis in mice as well as elucidated its impact on inflammation, oxidative stress, and intestinal microbiota.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2025
Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh.
This research evaluated the gut microbiota of Rohu fish from the Halda River and Kaptai Lake in Bangladesh by 16S rRNA sequencing. Distinct microbial profiles were identified, with Halda samples concentrated in pathogens and Kaptai samples abundant in probiotics.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Unlabelled: Severe acute pancreatitis (SAP) is characterized by systemic inflammation and intestinal barrier dysfunction and is often associated with gut microbiota dysbiosis. Rifaximin, a gut-specific non-absorbable antibiotic, is known to modulate the gut microbiota. Here, we investigated rifaximin's effects and mechanisms in SAP using murine models and a single-center, open-label, randomized controlled trial (Chinese Clinical Trial Registry: ChiCTR2100049794).
View Article and Find Full Text PDFJ Endocrinol
September 2025
School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
Gut dysbiosis and an increased risk of respiratory infection in type 2 diabetes have been well recognised. However, the relationship between the gut and respiratory pathobionts carriage rate in the Type 2 diabetic Malaysian population is understudied. To address the knowledge gap, we profiled the gut and upper respiratory tract microbial composition, as well as the urine metabolome of 31 type 2 diabetic adults and 14 non-diabetes adults.
View Article and Find Full Text PDF