Phytomedicine
September 2025
Background: Glioblastoma (GBM), the most aggressive form of glioma, is associated with a poor patient prognosis. Temozolomide (TMZ), the first-line chemotherapeutic agent for GBM patients, has its efficacy closely tied to patient prognosis. The epidermal growth factor receptor (EGFR) can affect TMZ efficacy by activating its downstream pathways.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors with limited treatment options, and chemotherapy resistance contributes to poor prognosis. An increasing number of studies have shown that ubiquitin specific peptidases (USPs), a subtype of deubiquitinases, can affect tumor progression by regulating the stability or biological function of substrate proteins. Thus, USPs are becoming attractive targets for cancer treatment.
View Article and Find Full Text PDFMater Horiz
August 2025
Materials featuring negative thermal expansion (NTE) properties are crucial for controlling overall thermal expansion. However, only a limited number of NTE materials are suitable as high-performance thermal expansion compensators owing to their small NTE magnitude and narrow NTE temperature range. PbTiO is a typical perovskite-type (ABO) ferroelectric that also exhibits a unique NTE.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2025
Polymer-based soft actuators capable of responsive shape morphing hold great potential for developing untethered soft robotics with dexterous motion under complex surroundings. To realize this potential, achieving fast, dynamically tunable shape morphing that can generate sufficient mechanical force is essential. Here, soft actuators composed of liquid crystal elastomer (LCE) bilayer film are constructed via direct ink writing (DIW), which exhibit rapid and sequential 3D-to-3D́ morphological reconfiguration within seconds under temperature stimulus.
View Article and Find Full Text PDFThe convective self-assembly of dip-coating is a long-established technique widely employed in scientific and industrial applications. Despite its apparent importance, many of the fundamental aspects remain unknown, particularly the exact assembling mechanism and its relationship with evaporation kinetics and fluid dynamics. Here, we perform the in-situ small-angle X-ray scattering study of the real-time convective self-assembly of colloidal particles inside a meniscus.
View Article and Find Full Text PDFThe interface phenomena and regulation mechanisms of semiconductor devices are crucial for their applications in the fields of electronics and optoelectronics. The piezotronic effect utilizes the strain-induced piezoelectric polarization at interfaces to regulate the interface energy band and carrier transport, so that the response current of the piezotronic device can change exponentially with small changes of stress/strain, showing high sensitivity. In recent years, in-depth studies of piezotronic effect regarding material, structure, and interface have largely enhanced the piezotronic device's performance; these investigations can also provide guidance for emerging interface engineering by polarizations like the flexotronic effect.
View Article and Find Full Text PDFWogonin is a compound extracted from the medicinal plant Scutellaria baicalensis Geogi and has been found to exert antitumor activities in a variety of malignancies. However, the molecular mechanisms involved in the anti-gastric cancer (GC) effects of wogonin remain poorly understood. In the present study, we found that wogonin treatment inhibited the proliferation of GC cells, induced apoptosis and G0/G1 cell arrest, and suppressed the migration and invasion of SGC-7901 and BGC-823 cells in vitro.
View Article and Find Full Text PDFVasculogenic mimicry (VM), which involved the formation of vascular-like structures by highly invasive tumor cells, had been identified as one of the mechanisms contributing to resistance against anti-angiogenic therapy in patients with glioblastoma (GBM). Therefore, inhibition of VM formation may serve as an effective therapeutic strategy against angiogenesis resistance. Polo-like kinase 4 (PLK4), a protein kinase, had been linked to the progression of glioblastoma and was associated with an unfavorable prognosis.
View Article and Find Full Text PDFCell Mol Biol Lett
September 2024
Background: Circular RNAs (circRNAs) can influence a variety of biological functions and act as a significant role in the progression and recurrence of glioblastoma (GBM). However, few coding circRNAs have been discovered in cancer, and their role in GBM is still unknown. The aim of this study was to identify coding circRNAs and explore their potential roles in the progression and recurrence of GBM.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
An efficient and facile water dissociation process plays a crucial role in enhancing the activity of alkaline hydrogen evolution reaction (HER). Considering the intricate influence between interfacial water and intermediates in typical catalytic systems, meticulously engineered catalysts should be developed by modulating electron configurations and optimizing surface chemical bonds. Here, a high-entropy double perovskite (HEDP) electrocatalyst La(CoNiMgZnNaLi)RuO, achieving a reduced overpotential of 40.
View Article and Find Full Text PDFGlioblastoma (GBM) represents a primary malignant brain tumor. Temozolomide resistance is a major hurdle in GBM treatment. Proteins encoded by circular RNAs (circRNAs) can modulate the sensitivity of multiple tumor chemotherapies.
View Article and Find Full Text PDFBiomed Pharmacother
September 2024
Microorganisms are closely related to human health, and changes in the microbiome can lead to the occurrence of diseases. With advances in sequencing technology and research, it has been discovered that intratumoral microbiota exists in various cancer tissues and differs in various cancers. Microorganism can colonize tumor tissues through intestine of damaged mucosal barrier, proximity to normal tissues and bloodstream circulation.
View Article and Find Full Text PDFAdv Mater
September 2024
While high-entropy alloys, high-entropy oxides, and high-entropy hydroxides, are advanced as a novel frontier in electrocatalytic oxygen evolution, their inherent activity deficiency poses a major challenge. To achieve the unlimited goal to tailor the structure-activity relationship in multicomponent systems, entropy-driven composition engineering presents substantial potential, by fabricating high-entropy anion-regulated transition metal compounds as sophisticated oxygen evolution reaction electrocatalysts. Herein, a versatile 2D high-entropy metal phosphorus trisulfide is developed as a promising and adjustable platform.
View Article and Find Full Text PDFVery recently, a new superconductor with = 80 K has been reported in nickelate (LaNiO) at around 15-40 GPa conditions (Nature, 621, 493, 2023), which is the second type of unconventional superconductor, besides cuprates, with above liquid nitrogen temperature. However, the phase diagram plotted in this report was mostly based on the transport measurement under low-temperature and high-pressure conditions, and the assumed corresponding X-ray diffraction (XRD) results were carried out at room temperature. This encouraged us to carry out in situ high-pressure and low-temperature synchrotron XRD experiments to determine which phase is responsible for the high state.
View Article and Find Full Text PDF2D perovskites have shown great potential toward stable and efficient photovoltaic devices. However, the crystal orientation and phase impurity issues of 2D perovskite films originating from the anisotropic crystal structure and specific growth mechanism have demoted their optoelectronic performances. Here, the surface crystallization modulation technique is introduced to fabricate the high-quality 2D perovskite films with both vertical crystal orientation and high phase purity by regulating the crystallization dynamics.
View Article and Find Full Text PDFGlioblastoma (GBM) is an extremely aggressive tumor associated with a poor prognosis that impacts the central nervous system. Increasing evidence suggests an inherent association between glucose metabolism dysregulation and the aggression of GBM. Polo-like kinase 4 (PLK4), a highly conserved serine/threonine protein kinase, was found to relate to glioma progression and unfavorable prognosis.
View Article and Find Full Text PDFAll-inorganic cesium lead halide perovskite nanocrystals (NCs) have received much attention due to their outstanding optical and electronic properties, but the underlying growth mechanism remains elusive due to their rapid formation process. Here, we report an in situ real-time study of the growth of CsPbBr NCs under practical synthesis conditions in a custom-made reactor. Through the synchrotron-based small-angle X-ray scattering technique, we find that the formation of CsPbBr NCs is accomplished in three steps: the fast nucleation process accompanied by self-focusing growth, the subsequent diffusion-limited Ostwald ripening, and the self-assembly of NCs into the face-centered cubic (fcc) superlattices at high temperature and the termination of growth.
View Article and Find Full Text PDFThis paper presents an innovative approach for predicting timing errors tailored to near-/sub-threshold operations, addressing the energy-efficient requirements of digital circuits in applications, such as IoT devices and wearables. The method involves assessing deep path activity within an adjustable window prior to the root clock's rising edge. By dynamically adapting the prediction window and supply voltage based on error detection outcomes, the approach effectively mitigates false predictions-an essential concern in low-voltage prediction techniques.
View Article and Find Full Text PDFBackground: Triple negative breast cancer (TNBC) is a major subtype of breast cancer, with limited therapeutic drugs in clinical. Epidermal growth factor receptor (EGFR) is reported to be overexpressed in various TNBC cells. Cantharidin is an effective ingredient in many clinical traditional Chinese medicine preparations, such as Delisheng injection, Aidi injection, Disodium cantharidinate and vitamin B6 injection.
View Article and Find Full Text PDFMaterials with negative thermal expansion (NTE) attract significant research attention owing to their unique physical properties and promising applications. Although ferroelectric phase transitions leading to NTE are widely investigated, information on antiferroelectricity-induced NTE remains limited. In this study, single-crystal and polycrystalline Pb CoMoO samples are prepared at high pressure and temperature conditions.
View Article and Find Full Text PDFIn this study, an electrostatic force-driven on-chip tester consisting of a mass with four guided cantilever beams was employed to extract the process-related bending stiffness and piezoresistive coefficient in-situ for the first time. The tester was manufactured using the standard bulk silicon piezoresistance process of Peking University, and was tested on-chip without additional handling. In order to reduce the deviation from process effects, the process-related bending stiffness was first extracted as an intermediate value, namely, 3590.
View Article and Find Full Text PDFA series of methane-vented explosions were experimentally investigated in a 4.5 m rectangular chamber at = 100 kPa and = 298 K, and the effects of ignition positions and vent areas on the external flame and temperature characteristics were studied. The results indicate that the vent area and ignition position significantly affect external flame and temperature changes.
View Article and Find Full Text PDF