The dietary exposure risk of cadmium (Cd) in rice is significantly higher than that of copper (Cu), while the co-migration of Cd and Cu in the soil-crop system may enhance the bioavailability of pollution, thus making rapid and accurate prediction of their accumulation in crops essential for assessing the risks associated with cultivated land. However, the previous prediction methods based on the total content of heavy metals in soil or in a single form have certain limitations. We collected 82 pairs of soil and rice samples from Hunan Province in China and used diffusive gradient in thin films (DGT) technology combined with chemical extraction (ultrapure water, acidic ammonium oxalate, calcium chloride) to explore the bioavailability characteristic of Cd and Cu, while machine learning (ML) models for Cd and Cu accumulation in rice were developed by integrating soil physicochemical parameters and heavy metal speciation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2025
Directly converting methane into high-value products like CHCOOH poses significant challenges owing to the kinetic limitations of C─H activation and C─C coupling in traditional single-catalysis methods. This work systematically studied the compatibility and effectiveness of plasma and thermocatalytic tandem systems. By optimizing the plasma process in a self-designed dielectric barrier discharge (DBD) reactor, we enhanced methane conversion (68.
View Article and Find Full Text PDFRedox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Doxorubicin-induced cardiotoxicity (DIC) poses a threat to the health and prognosis of cancer patients. It is important to find a safe and effective method for the prevention and treatment of DIC. eEF2K, which is a highly conserved α-kinase, is thought to be a therapeutic target for several human diseases.
View Article and Find Full Text PDFPlant Cell Physiol
February 2025
Increasing seed oil content (SOC) is an important breeding goal for soybean breeding. While significant efforts have been made to improve SOC through metabolic pathway engineering, research to increase soybean SOC by reducing lipid degradation and fatty acid (FA) decomposition during seed maturation process is limited. Seed fatty acid reducers (SFARs) are members of the GDSL enzyme family and play a crucial role in lipid metabolism.
View Article and Find Full Text PDFAcyl-acyl carrier protein (ACP) thioesterases (FAT) hydrolyze acyl-ACP complexes to release FA in plastids, which ultimately affects FA biosynthesis and profiles. Soybean GmFATA1 and GmFATA2 are homoeologous genes encoding oleoyl-ACP thioesterases whose role in seed oil accumulation and plant growth has not been defined. Using CRISPR/Cas9 gene editing mutation of Gmfata1 or 2 led to reduced leaf FA content and growth defect at the early seedling stage.
View Article and Find Full Text PDFVacuolar storage of inorganic phosphate (Pi) is essential for Pi homeostasis in plants. The SPX-MFS family proteins have been demonstrated to be vacuolar Pi transporters in many plant species. Transcriptional regulation of the predominant transporter among rice SPX-MFSs, OsSPX-MFS3, was only moderately suppressed by Pi starvation.
View Article and Find Full Text PDFPlant Cell Environ
April 2023
Plant vacuoles serve as the primary intracellular compartments for phosphorus (P) storage. The Oryza sativa genome contains three genes that encode SPX ( SYG1/ PHO81/ XPR1)-MFS ( Major Facility Superfamily) proteins (OsSPX-MFS1-3). The physiological roles of the three transporters under varying P conditions in laboratory and field are not known.
View Article and Find Full Text PDFMagnetism of any material depends on its crystal structure. However, two isostructural compounds such as MCuMoO4(OH) (M = Na, K) can have markedly different magnetic properties. Herein, we introduce a new method to describe the linkages between the O-atoms and their bridged Cu2+ ions in order to clearly illustrate the structure-magnetic property relationships.
View Article and Find Full Text PDFIron (Fe) is an essential micronutrient in plants, and Fe limitation significantly affects plant growth, yield and food quality. While many studies have reported the transcriptomic profile and pursue molecular mechanism in response to Fe limitation, little is known if epigenetic factors play a role in response to Fe-deficiency. In this study, whole-genome bisulfite sequencing analysis, high-throughput RNA-Seq of mRNA, small RNA and transposable element (TE) expression with root and shoot organs of rice seedlings under Fe-sufficient and Fe-deficient conditions were performed.
View Article and Find Full Text PDFGenes (Basel)
April 2021
Iron (Fe) deficiency directly affects crop growth and development, ultimately resulting in reduced crop yield and quality. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to play critical regulatory roles in a multitude of pathways across numerous species. However, systematic screening of lncRNAs responding to Fe deficiency and their regulatory mechanism in plants has not been reported.
View Article and Find Full Text PDFGreen leaf volatiles (GLVs) are released by plants when they encounter biotic stress, but their functions in the response to abiotic stress have not been determined. We have previously shown that exogenous application of (Z)-3-hexeny-1-yl acetate (Z-3-HAC), a kind of GLV, could alleviate salt stress in peanut (Arachis hypogaea L.) seedlings; however, notably little is known concerning the transcription regulation mechanisms of Z-3-HAC.
View Article and Find Full Text PDFGreen leaf volatiles play vital roles in plant biotic stress; however, their functions in plant responses to abiotic stress have not been determined. The aim of this study was to investigate the possible role of (Z)-3-hexeny-1-yl acetate (Z-3-HAC), a kind of green leaf volatile, in alleviating the salinity stress of peanut () seedlings and the underlying physiological mechanisms governing this effect. One salt-sensitive and one salt-tolerant peanut genotype were primed with 200 μM Z-3-HAC at the 4-week-old stage before they were exposed to salinity stress.
View Article and Find Full Text PDFPlant Physiol
August 2019
Soybean () seed is primarily composed of a mature embryo that provides a major source of protein and oil for humans and other animals. Early in development, the tiny embryos grow rapidly and acquire large quantities of sugars from the liquid endosperm of developing seeds. An insufficient supply of nutrients from the endosperm to the embryo results in severe seed abortion and yield reduction.
View Article and Find Full Text PDF