Transcriptomic Profiling of Fe-Responsive lncRNAs and Their Regulatory Mechanism in Rice.

Genes (Basel)

State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Iron (Fe) deficiency directly affects crop growth and development, ultimately resulting in reduced crop yield and quality. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to play critical regulatory roles in a multitude of pathways across numerous species. However, systematic screening of lncRNAs responding to Fe deficiency and their regulatory mechanism in plants has not been reported. In this work, 171 differently expressed lncRNAs (DE-lncRNAs) were identified based on analysis of strand-specific RNA-seq data from rice shoots and roots under Fe-deficient conditions. We also found several lncRNAs, which could generate miRNAs or act as endogenous target mimics to regulate expression of Fe-related genes. Analysis of interaction networks and gene ontology enrichment revealed that a number of DE-lncRNAs were associated with iron transport and photosynthesis, indicating a possible role of lncRNAs in regulation of Fe homeostasis. Moreover, we identified 76 potential lncRNA targets of OsbHLH156, a key regulator for transcriptional response to Fe deficiency. This study provides insight into the potential functions and regulatory mechanism of Fe-responsive lncRNAs and would be an initial and reference for any further studies regarding lncRNAs involved in Fe deficiency in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070830PMC
http://dx.doi.org/10.3390/genes12040567DOI Listing

Publication Analysis

Top Keywords

regulatory mechanism
12
lncrnas
8
fe-responsive lncrnas
8
transcriptomic profiling
4
profiling fe-responsive
4
regulatory
4
lncrnas regulatory
4
mechanism rice
4
rice iron
4
deficiency
4

Similar Publications

Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.

View Article and Find Full Text PDF

IL-2 agonists significantly modulate T cell regulation, impacting activation, proliferation, differentiation, and immune homeostasis. Interleukin-2 (IL-2) is crucial for T cell growth and function, binding to the IL-2 receptor to trigger signaling pathways that balance immune responses. IL-2 promotes the expansion of effector T cells and enhances regulatory T cells (Tregs), preventing autoimmune responses.

View Article and Find Full Text PDF

Noncoding RNA regulatory networks play crucial roles in human breast cancer. The aim of this study was to establish a network containing multi-type RNAs and RBPs in triple-negative breast cancer (TNBC). Differential expression analyses of lncRNAs, miRNAs, and genes were performed using the GEO2R tool.

View Article and Find Full Text PDF

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

Microfluidic paper-based analytical devices for food spoilage detection: emerging trends and future directions.

Talanta

September 2025

Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam. Electronic address:

Food spoilage poses a global challenge with far-reaching consequences for public health, economic stability, and environmental sustainability. Conventional analytical methods for spoilage detection though accurate are often cost-prohibitive, labor-intensive, and unsuitable for real-time or field-based monitoring. Microfluidic paper-based analytical devices (μPADs) have emerged as a transformative technology offering rapid, portable, and cost-effective solutions for food quality assessment.

View Article and Find Full Text PDF