98%
921
2 minutes
20
Magnetism of any material depends on its crystal structure. However, two isostructural compounds such as MCuMoO4(OH) (M = Na, K) can have markedly different magnetic properties. Herein, we introduce a new method to describe the linkages between the O-atoms and their bridged Cu2+ ions in order to clearly illustrate the structure-magnetic property relationships. This new method can account for magnetic differences between the two isostructural MCuMoO4(OH) and is further confirmed by the rational design and development of a new compound KGaCu(PO4)2 with different linkages. The title compound crystalized in a space group of P21/c adopts a one-dimensional (1D) magnetically isolated S = 1/2 zigzag chain composed of elongated [CuO6] octahedra via sharing alternately equatorial and skew edges. O atoms at the skew edges bridge the equatorial and axial orbitals of neighbouring Cu2+ ions (denoted EOA), while those at the equatorial edges bridge the equatorial orbitals of Cu2+ ions (EOE). The nearest-neighbour (NN) magnetic coupling of Cu2+ ions with the EOA linkage at 2.821 Å in the title compound is negligible, whereas the NN magnetic coupling of Cu2+ ions with the EOE linkage at 2.974 Å is essential. Therefore, the zigzag chain containing alternating spin-exchange dimers and no-spin-exchange ones is similar in electronic configuration to the dimerization of the quasi-one-dimensional antiferromagnet. Magnetic investigation of analogous compounds with a 'trans-cis-trans-cis' configuration observed in the title compound may shed light on structural evolutions associated with spin-Peierls (SP) transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt00819f | DOI Listing |
Analyst
September 2025
Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
Copper ions are essential elements in the human body and participate in various physiological activities in the bodies of organisms. Herein, an ultrasensitive electrochemical biosensor was developed for detection of copper ions (Cu) based on FeO@Au magnetic nanoparticles (FeO@Au MNPs) and a Cu-dependent DNAzyme assisted nicking endonuclease signal amplification (NESA) strategy. dsDNA is formed by a hybridization reaction between DNA S2 and S1 immobilized on the surface of FeO@Au MNPs.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, 10000, Viet Nam. Electronic address:
Background: Recent advancements in cancer therapeutics have catalyzed the development of noninvasive treatment modalities, including the utilization of fluorescent chemotherapeutic agents. These agents offer dual functionality, enabling targeted drug delivery, real-time tumor imaging, and personalized therapy monitoring. Such capabilities are instrumental in the progression toward more precise and effective cancer interventions.
View Article and Find Full Text PDFSci Total Environ
September 2025
Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China.
This study investigates the bioavailability of humic nitrogen (humic-N) to algae through controlled bioassay experiments. Algae were able to utilize dissolved organic nitrogen (DON) from both humic acid (HA) and fulvic acid (FA), with bacterial co-culture enhancing uptake. Bioavailable nitrogen (BAN) from HA accounted for ~20 % of total nitrogen, whereas FA reached ~45 %, with bacterial presence further increasing FA utilization by about 6-7 %.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502285, Telangana, India.
The demand for trans-1,3,3,3-tetrafluoropropene [HFO-1234ze(E)] as a next-generation, low-global-warming-potential (GWP) refrigerant is rising due to international restrictions on high-GWP refrigerants like chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). Catalytic dehydrofluorination of HFC-245fa offers a viable synthesis route for the production of HFO-1234ze(E), but the catalyst degradation under harsh acidic conditions remains a major challenge. In this study, a highly stable γ-AlO supported catalyst was developed for efficient dehydrofluorination with vanadium species exhibiting the highest activity among the screened metal ions Ni, V, Zn, La, Fe, Mn and Cu.
View Article and Find Full Text PDFCurr Med Sci
September 2025
Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Objective: To investigate the differential expression of microRNA-144-3p in endometrial cells exposed to copper ions in vitro. The specific mechanism by which microRNA-144-3p is involved in Cu-induced damage to the human endometrial epithelial cells (HEECs) was explored.
Methods: HEECs were cultured in copper-containing culture medium to simulate changes in the endometrium after copper intrauterine device (Cu-IUD) implantation.