Lipolysis in white adipose tissue (WAT) provides fatty acids as energy substrates for thermogenesis to increase energy expenditure. Syndecan-4 (Sdc4) is a transmembrane proteoglycan bearing heparan sulfate chains. Although single nucleotide polymorphisms (SNPs) of the Sdc4 gene have been identified linking to metabolic syndromes, its specific function in adipose tissue remains obscure.
View Article and Find Full Text PDFBackground And Aims: Metabolic dysfunction-associated steatohepatitis (MASH) and its related liver fibrosis represent a substantial public health burden with limited treatment options. Although MASH is associated with enhanced neutrophil infiltration in the liver, the mediators and mechanisms underlying neutrophil-driven progression of MASH and fibrosis remain largely unknown. This study aimed to investigate the role of neutrophil serine proteases neutrophil elastase (NE) and proteinase 3 (PR3) in the development of MASH and fibrosis.
View Article and Find Full Text PDFDysregulation of adipose tissue (AT) homeostasis in obesity contributes to metabolic stress and disorders. Here, we identified that Coiled-coil-helix-coiled-coil-helix domain containing 10 (Chchd10) is a novel regulator of AT remodeling upon excess energy intake. Chchd10 is significantly reduced in the white adipose tissue (WAT) of mice in response to high-fat diet (HFD) feeding.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is a critical interface that maintains the central nervous system homeostasis by controlling the exchange of substances between the blood and the brain. Disruption of the BBB plays a vital role in the development of neuroinflammation and neurological dysfunction in sepsis, but the mechanisms by which the BBB becomes disrupted during sepsis are not well understood. Here, we induced endotoxemia, a major type of sepsis, in mice by intraperitoneal injection of lipopolysaccharide (LPS).
View Article and Find Full Text PDFBackground: The COVID-19 pandemic caused by the SARS-CoV-2 virus has resulted in a global health crisis with significant morbidity and mortality. While effective vaccinations have been developed, drug treatments for the disease are still required, particularly for different stages of the disease and to combat evolving variants. Identifying reliable biomarkers and potential therapeutic targets for the different stages of COVID-19 is crucial.
View Article and Find Full Text PDFReperfusion therapy is currently the most effective treatment for acute ischemic stroke, but often results in secondary brain injury. Adipocyte fatty acid-binding protein (A-FABP, FABP4, or aP2) was shown to critically mediate cerebral ischemia/reperfusion (I/R) injury by exacerbating blood-brain barrier (BBB) disruption. However, no A-FABP inhibitors have been approved for clinical use due to safety issues.
View Article and Find Full Text PDFBackground And Purpose: Adipocyte fatty acid-binding protein (A-FABP) exacerbates cerebral ischaemia injury by disrupting the blood-brain barrier (BBB) through inducing expression of MMP-9. Circulating A-FABP levels positively correlate with infarct size in stroke patients. We hypothesized that targeting circulating A-FABP by a neutralizing antibody would alleviate ischaemic stroke outcome.
View Article and Find Full Text PDFRapid upregulation of matrix metalloproteinase 9 (MMP-9) leads to blood-brain barrier (BBB) breakdown following stroke, but no MMP-9 inhibitors have been approved in clinic largely due to their low specificities and side effects. Here, we explored the therapeutic potential of a human IgG monoclonal antibody (mAb), L13, which was recently developed with exclusive neutralizing specificity to MMP-9, nanomolar potency, and biological function, using mouse stroke models and stroke patient samples. We found that L13 treatment at the onset of reperfusion following cerebral ischemia or after intracranial hemorrhage (ICH) significantly reduced brain tissue injury and improved the neurological outcomes of mice.
View Article and Find Full Text PDFLymph nodes (LNs) are always embedded in the metabolically-active white adipose tissue (WAT), whereas their functional relationship remains obscure. Here, we identify fibroblastic reticular cells (FRCs) in inguinal LNs (iLNs) as a major source of IL-33 in mediating cold-induced beiging and thermogenesis of subcutaneous WAT (scWAT). Depletion of iLNs in male mice results in defective cold-induced beiging of scWAT.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
October 2022
Background & Aims: The prevalence of nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions globally as a result of the rapid increase in obesity. However, there is no Food and Drug Administration-approved pharmacotherapy available for NAFLD. This study investigated the role of autotaxin, a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidic acid (LPA), in the pathogenesis of NAFLD and to explore whether genetic or pharmacologic interventions targeting autotaxin ameliorate NAFLD.
View Article and Find Full Text PDFAlthough mitophagy is known to restrict NLRP3 inflammasome activation, the underlying regulatory mechanism remains poorly characterized. Here we describe a type of early endosome-dependent mitophagy that limits NLRP3 inflammasome activation. Deletion of the endosomal adaptor protein APPL1 impairs mitophagy, leading to accumulation of damaged mitochondria producing reactive oxygen species (ROS) and oxidized cytosolic mitochondrial DNA, which in turn trigger NLRP3 inflammasome overactivation in macrophages.
View Article and Find Full Text PDFDevelopment of liver fibrosis results in drastic changes in the liver microenvironment, which in turn accelerates disease progression. Although the pathological function of various hepatic cells in fibrogenesis is identified, the crosstalk between them remains obscure. The present study demonstrates that hepatic expression of adipocyte fatty acid binding protein (A-FABP) is induced especially in the liver sinusoidal endothelial cells (LSECs) in mice after bile duct ligation (BDL).
View Article and Find Full Text PDFAims: Adipocyte fatty acid-binding protein (A-FABP) is an adipokine implicating in various metabolic diseases. Elevated circulating levels of A-FABP correlate positively with poor prognosis in ischaemic stroke (IS) patients. No information is available concerning the role of A-FABP in the pathogenesis of IS.
View Article and Find Full Text PDFBackground And Aims: Most tumor cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and promote tumorigenicity and drug resistance. Intriguingly, the molecular mechanisms underlying this phenomenon are not well understood. In this work, using gain-of-function and loss-of-function in vitro studies in patient-derived organoid and cell cultures as well as in vivo positron emission tomography-magnetic resonance imaging animal models, we showed that protein arginine N-methyltransferase 6 (PRMT6) regulates aerobic glycolysis in human hepatocellular carcinoma (HCC) through nuclear relocalization of pyruvate kinase M2 isoform (PKM2), a key regulator of the Warburg effect.
View Article and Find Full Text PDFPersistent, unresolved inflammation in adipose tissue is a major contributor to obesity-associated metabolic complications. However, the molecular links between lipid-overloaded adipocytes and inflammatory immune cells in obese adipose tissues remain elusive. Here we identified adipocyte-secreted microRNA-34a (miR-34a) as a key mediator through its paracrine actions on adipose-resident macrophages.
View Article and Find Full Text PDFThe adipokine adipocyte fatty acid-binding protein (A-FABP) has been implicated in obesity-related cardio-metabolic complications. Here we show that A-FABP increases thermogenesis by promoting the conversion of T4 to T3 in brown adipocytes. We find that A-FABP levels are increased in both white (WAT) and brown (BAT) adipose tissues and the bloodstream in response to thermogenic stimuli.
View Article and Find Full Text PDFLipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses.
View Article and Find Full Text PDFClin Sci (Lond)
November 2016
Both atherosclerosis and obesity, an independent atherosclerotic risk factor, are associated with enhanced systemic inflammation. Obesity is also characterized by increased adipose tissue inflammation. However, the molecular mechanism underlying the accelerated atherosclerosis in obesity remains unclear.
View Article and Find Full Text PDFMitochondrial metabolism is pivotal for glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. However, little is known about the molecular machinery that controls the homeostasis of intermediary metabolites in mitochondria. Here we show that the activation of p53 in β-cells, by genetic deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice.
View Article and Find Full Text PDFClinical evidence shows that circulating levels of adipocyte fatty-acid-binding protein (A-FABP) are elevated in patients with diabetes and closely associated with ischaemic heart disease. Patients with diabetes are more susceptible to myocardial ischaemia/reperfusion (MI/R) injury. The experiments in the present study investigated the role of A-FABP in MI/R injury with or without diabetes.
View Article and Find Full Text PDFAdiponectin mediates anti-diabetic effects via increasing hepatic insulin sensitivity and direct metabolic effects. In the present study, we conducted a comprehensive and unbiased metabolomic profiling of liver tissue from AdKO (adiponectin-knockout) mice, with and without adiponectin supplementation, fed on an HFD (high-fat diet) to derive insight into the mechanisms and consequences of insulin resistance. Hepatic lipid accumulation and insulin resistance induced by the HFD were reduced by adiponectin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2014
Adiponectin (ADN) is an adipocyte-secreted protein with insulin-sensitizing, antidiabetic, antiinflammatory, and antiatherogenic properties. Evidence is also accumulating that ADN has neuroprotective activities, yet the underlying mechanism remains elusive. Here we show that ADN could pass through the blood-brain barrier, and elevating its levels in the brain increased cell proliferation and decreased depression-like behaviors.
View Article and Find Full Text PDFInsulin inhibits hepatic glucose production through activation of the protein kinase Akt, and any defect in this pathway causes fasting hyperglycaemia in Type 2 diabetes. APPL1 [adaptor protein, phosphotyrosine interaction, PH (pleckstrin homology) domain and leucine zipper containing 1] sensitizes hepatic insulin action on suppression of gluconeogenesis by binding to Akt. However, the mechanisms underlying the insulin-sensitizing actions of APPL1 remain elusive.
View Article and Find Full Text PDFObjective: This study was designed to (1) investigate the expression profiles of resistin in db/db mice and its dynamic association with metabolic parameters; and (2) evaluate the effects of Rosiglitazone on production of resistin.
Methods: Db/db mice and their lean litter mates were used for this study. Epididymal fat tissue was excised from mice of different age (from 5 to 12 weeks) for ex vivo incubation.