Global climate change is shifting thermal gradients in the world's oceans, resulting in the redistribution of species and thermophilisation of reefs. In the Southwest Pacific, warming has underpinned the range extension and population increase of the habitat-modifying sea urchin, Centrostephanus rodgersii. Eastern Tasmania and Northeastern Aotearoa New Zealand (NZ) lie at the forefront of these changes, with increases in C.
View Article and Find Full Text PDFWell-designed and managed marine protected areas (MPAs) can have positive outcomes for reef biodiversity, but their effectiveness for conservation outcomes is also influenced by local environmental and anthropogenic factors. To assess the importance of local factors on MPA effectiveness, we compared field-collected data on total reef fish biomass from 922 sites inside and outside a network of 49 MPAs across temperate Australia using modelled predictions of biomass based on local biogenic habitat, physical environment and anthropogenic factors. We found fish biomass was 34% greater in fully protected MPAs in temperate Australia than predicted if they were openly fished, whereas biomass in partially protected MPAs was equivalent to fished sites.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2025
On shallow rocky and coral reefs, cultural and recreational values, like aesthetics, are critical aspects of Nature's Contributions to People (NCP) that support human well-being and provide billions of dollars in tourism revenue. Quantifying the aesthetic value of reef ecosystems and uncovering the conditions that enhance it could support NCP-based management. Here, we combine a global dataset of reef fish surveys, species-level aesthetic values, and causal modeling to assess the global status and drivers of reef fish assemblage aesthetic value.
View Article and Find Full Text PDFUnderstanding how environmental and human pressures impact the temporal stability of fish community biomass on shallow reefs is essential for effective conservation and management. These pressures influence community stability directly, by affecting species' stability and asynchrony in species' fluctuations. However, their effects may also indirectly depend on the functional traits of the species composing the community, which remains poorly understood.
View Article and Find Full Text PDFTemperature perturbations from climate change affect ecosystems through short-term pulse events, such as heatwaves, and chronic long-term shifts. Temperate rocky reef ecosystems have been observed to show substantial ecological change as a result of short-term temperature fluctuations, but the longer-term impacts of temperature change remain poorly understood. Here, we investigate temperate reef fishes and mobile invertebrates along Tasmania's east coast, contrasting trends in species richness, abundance, and community structure across seasons within a year to those observed over three decades of warming.
View Article and Find Full Text PDFThe services provided by the world's coral reefs are threatened by increasingly frequent and severe marine heatwaves. Heatwave-induced degradation of reefs has often been inferred from the extent of the decline in total coral cover, which overlooks extreme variation among coral taxa in their susceptibility and responses to thermal stress. Here, we provide a continental-scale assessment of coral cover changes at 262 shallow tropical reef sites around Australia, using ecological survey data on 404 coral taxa before and after the 2016 mass bleaching event.
View Article and Find Full Text PDFEffective fisheries management requires accurate estimates of stock biomass and trends; yet, assumptions in stock assessment models generate high levels of uncertainty and error. For 230 fisheries worldwide, we contrasted stock biomass estimates at the time of assessment with updated hindcast estimates modeled for the same year in later assessments to evaluate systematic over- or underestimation. For stocks that were overfished, low value, or located in regions with rising temperatures, historical biomass estimates were generally overstated compared with updated assessments.
View Article and Find Full Text PDFHuman interest in biodiversity is essential for effective conservation action but remains poorly quantified at large scales. Here, we investigated human interest for 2408 marine reef fishes using data obtained from online public databases and social media, summarized in two synthetic dimensions, research effort and public attention. Both dimensions are mainly related to geographic range size.
View Article and Find Full Text PDFMarine protected areas (MPAs) are the most widely applied tool for marine biodiversity conservation, yet many gaps remain in our understanding of their species-specific effects, partly because the socio-environmental context and spatial autocorrelation may blur and bias perceived conservation outcomes. Based on a large data set of nearly 3000 marine fish surveys spanning all tropical regions of the world, we build spatially explicit models for 658 fish species to estimate species-specific responses to protection while controlling for the environmental, habitat and socio-economic contexts experienced across their geographic ranges. We show that the species responses are highly variable, with ~40% of fishes not benefitting from protection.
View Article and Find Full Text PDFProtection from direct human impacts can safeguard marine life, yet ocean warming crosses marine protected area boundaries. Here, we test whether protection offers resilience to marine heatwaves from local to network scales. We examine 71,269 timeseries of population abundances for 2269 reef fish species surveyed in 357 protected versus 747 open sites worldwide.
View Article and Find Full Text PDFAquatic ectotherms often attain smaller body sizes at higher temperatures. By analysing ~15,000 coastal-reef fish surveys across a 15°C spatial sea surface temperature (SST) gradient, we found that the mean length of fish in communities decreased by ~5% for each 1°C temperature increase across space, or 50% decrease in mean length from 14 to 29°C mean annual SST. Community mean body size change was driven by differential temperature responses within trophic groups and temperature-driven change in their relative abundance.
View Article and Find Full Text PDFPopulation estimates are required for effective conservation of many rare marine species, but can be difficult to obtain. The critically endangered red handfish (Thymichthys politus) is a coastal anglerfish known only from two fragmented populations in southeast Tasmania, Australia. It is at a high risk of extinction due to low numbers, loss of habitat, and the impacts of climate change.
View Article and Find Full Text PDFThe multifaceted effects of climate change on physical and biogeochemical processes are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources.
View Article and Find Full Text PDFSustainably managing fisheries requires regular and reliable evaluation of stock status. However, most multispecies reef fisheries around the globe tend to lack research and monitoring capacity, preventing the estimation of sustainable reference points against which stocks can be assessed. Here, combining fish biomass data for >2000 coral reefs, we estimate site-specific sustainable reference points for coral reef fisheries and use these and available catch estimates to assess the status of global coral reef fish stocks.
View Article and Find Full Text PDFHuman society is dependent on nature, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations. Knowledge of species fluctuations is particularly inadequate in the marine realm. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade.
View Article and Find Full Text PDFNat Ecol Evol
December 2022
Warming seas, marine heatwaves, and habitat degradation are increasingly widespread phenomena affecting marine biodiversity, yet our understanding of their broader impacts is largely derived from collective insights from independent localized studies. Insufficient systematic broadscale monitoring limits our understanding of the true extent of these impacts and our capacity to track these at scales relevant to national policies and international agreements. Using an extensive time series of co-located reef fish community structure and habitat data spanning 12 years and the entire Australian continent, we found that reef fish community responses to changing temperatures and habitats are dynamic and widespread but regionally patchy.
View Article and Find Full Text PDFReef fishes are closely connected to many human populations, yet their contributions to society are mostly considered through their economic and ecological values. Cultural and intrinsic values of reef fishes to the public can be critical drivers of conservation investment and success, but remain challenging to quantify. Aesthetic value represents one of the most immediate and direct means by which human societies engage with biodiversity, and can be evaluated from species to ecosystems.
View Article and Find Full Text PDFDiet and body mass are inextricably linked in vertebrates: while herbivores and carnivores have converged on much larger sizes, invertivores and omnivores are, on average, much smaller, leading to a roughly U-shaped relationship between body size and trophic guild. Although this U-shaped trophic-size structure is well documented in extant terrestrial mammals, whether this pattern manifests across diverse vertebrate clades and biomes is unknown. Moreover, emergence of the U-shape over geological time and future persistence are unknown.
View Article and Find Full Text PDFIncreasing speed and magnitude of global change threaten the world's biodiversity and particularly coral reef fishes. A better understanding of large-scale patterns and processes on coral reefs is essential to prevent fish biodiversity decline but it requires new monitoring approaches. Here, we use environmental DNA metabarcoding to reconstruct well-known patterns of fish biodiversity on coral reefs and uncover hidden patterns on these highly diverse and threatened ecosystems.
View Article and Find Full Text PDFClimate change and fisheries exploitation are dramatically changing the abundances, species composition, and size spectra of fish communities. We explore whether variation in 'abundance size spectra', a widely studied ecosystem feature, is influenced by a parameter theorized to govern the shape of size-structured ecosystems-the relationship between the sizes of predators and their prey (predator-prey mass ratios, or PPMRs). PPMR estimates are lacking for avast number of fish species, including at the scale of trophic guilds.
View Article and Find Full Text PDFHuman impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass.
View Article and Find Full Text PDFUrbanized coral reefs experience anthropogenic disturbances caused by coastal development, pollution, and nutrient runoff, resulting in turbid, marginal conditions in which only certain species can persist. Mortality effects are exacerbated by increasingly regular thermal stress events, leading to shifts towards novel communities dominated by habitat generalists and species with low structural complexity.There is limited data on the turnover processes that occur due to this convergence of anthropogenic stressors, and how novel urban ecosystems are structured both at the community and functional levels.
View Article and Find Full Text PDFExtreme climatic events can reshape the functional structure of ecological communities, potentially altering ecological interactions and ecosystem functioning. While these shifts have been widely documented, evidence of their persistence and potential flow-on effects on ecosystem structure following relaxation of extreme events remains limited. Here, we investigate changes in the functional trait structure - encompassing dimensions of resource use, thermal affinity, and body size - of herbivorous fishes in a temperate reef system that experienced an extreme marine heatwave (MHW) and subsequent return to cool conditions.
View Article and Find Full Text PDF