Ectotherms given time to acclimate to warmer environments, habitats or experimental treatments tend to tolerate higher maximum temperatures, but only slightly higher. This means warmer acclimated organisms live closer to their physiological temperature limits (their 'critical temperatures'). The reason for this modest-and often highly variable-plasticity of heat limits is debated but raises concerns for resilience to future climate warming.
View Article and Find Full Text PDFHotspots - sites with high temperatures - are expected to favor heat-tolerant organisms. Lachs et al. tested this assumption with Palau corals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Effective fisheries management requires accurate estimates of stock biomass and trends; yet, assumptions in stock assessment models generate high levels of uncertainty and error. For 230 fisheries worldwide, we contrasted stock biomass estimates at the time of assessment with updated hindcast estimates modeled for the same year in later assessments to evaluate systematic over- or underestimation. For stocks that were overfished, low value, or located in regions with rising temperatures, historical biomass estimates were generally overstated compared with updated assessments.
View Article and Find Full Text PDFAs on land, oceans exhibit high temporal and spatial temperature variation. This "ocean weather" contributes to the physiological and ecological processes that ultimately determine the patterns of species distribution and abundance, yet is often unrecognized, especially in tropical oceans. Here, we tested the paradigm of temperature stability in shallow waters (<12.
View Article and Find Full Text PDFAntarctic marine ectotherms live in the constant cold and are characterised by limited resilience to elevated temperature. Here we tested three of the central paradigms underlying this resilience. Firstly, we assessed the ability of eight species, from seven classes representing a range of functional groups, to survive, for 100 to 303 days, at temperatures 0 to 4 °C above previously calculated long-term temperature limits.
View Article and Find Full Text PDFConserv Physiol
April 2024
Fluctuating ocean conditions are rearranging whole networks of marine communities-from individual-level physiological thresholds to ecosystem function. Physiological studies support predictions from individual-level responses (biochemical, cellular, tissue, respiratory potential) based on laboratory experiments. The otolith-isotope method of recovering field metabolic rate has recently filled a gap for the bony fishes, linking otolith stable isotope composition to oxygen consumption and experienced temperature estimates.
View Article and Find Full Text PDFProtection from direct human impacts can safeguard marine life, yet ocean warming crosses marine protected area boundaries. Here, we test whether protection offers resilience to marine heatwaves from local to network scales. We examine 71,269 timeseries of population abundances for 2269 reef fish species surveyed in 357 protected versus 747 open sites worldwide.
View Article and Find Full Text PDFBiotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020.
View Article and Find Full Text PDFWinter at high latitudes is characterized by low temperatures, dampened light levels and short photoperiods which shape ecological and evolutionary outcomes from cells to populations to ecosystems. Advances in our understanding of winter biological processes (spanning physiology, behaviour and ecology) highlight that biodiversity threats (e.g.
View Article and Find Full Text PDFHuman society is dependent on nature, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations. Knowledge of species fluctuations is particularly inadequate in the marine realm. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade.
View Article and Find Full Text PDFCritical thermal maxima methodology (CTM) has been used to infer acute upper thermal tolerance in fishes since the 1950s, yet its ecological relevance remains debated. In this study, the authors synthesize evidence to identify methodological concerns and common misconceptions that have limited the interpretation of critical thermal maximum (CT ; value for an individual fish during one trial) in ecological and evolutionary studies of fishes. They identified limitations of, and opportunities for, using CT as a metric in experiments, focusing on rates of thermal ramping, acclimation regimes, thermal safety margins, methodological endpoints, links to performance traits and repeatability.
View Article and Find Full Text PDFWarming seas, marine heatwaves, and habitat degradation are increasingly widespread phenomena affecting marine biodiversity, yet our understanding of their broader impacts is largely derived from collective insights from independent localized studies. Insufficient systematic broadscale monitoring limits our understanding of the true extent of these impacts and our capacity to track these at scales relevant to national policies and international agreements. Using an extensive time series of co-located reef fish community structure and habitat data spanning 12 years and the entire Australian continent, we found that reef fish community responses to changing temperatures and habitats are dynamic and widespread but regionally patchy.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
February 2023
Diet and body mass are inextricably linked in vertebrates: while herbivores and carnivores have converged on much larger sizes, invertivores and omnivores are, on average, much smaller, leading to a roughly U-shaped relationship between body size and trophic guild. Although this U-shaped trophic-size structure is well documented in extant terrestrial mammals, whether this pattern manifests across diverse vertebrate clades and biomes is unknown. Moreover, emergence of the U-shape over geological time and future persistence are unknown.
View Article and Find Full Text PDFChanging biodiversity alters ecosystem functioning in nature, but the degree to which this relationship depends on the taxonomic identities rather than the number of species remains untested at broad scales. Here, we partition the effects of declining species richness and changing community composition on fish community biomass across >3000 coral and rocky reef sites globally. We find that high biodiversity is 5.
View Article and Find Full Text PDFSci Total Environ
February 2022
Physiological comparisons are fundamental to quantitative assessments of the capacity of species to persist within their current distribution and to predict their rates of redistribution in response to climate change. Yet, the degree to which physiological traits are conserved through evolutionary history may fundamentally constrain the capacity for species to adapt and shift their geographic range. Taxa that straddle major climate transitions provide the opportunity to test the mechanisms underlying evolutionary constraints and how such constraints may influence range shift predictions.
View Article and Find Full Text PDFThe COVID-19 lockdown reduced human mobility and led to immediate insights into how humans impact nature. Yet the strongest ecological impacts are likely to come. As we emerge from the pandemic, governments should avoid prioritizing short-term economic gains that compromise ecosystems and the services they provide humanity.
View Article and Find Full Text PDFSuccess and impact metrics in science are based on a system that perpetuates sexist and racist "rewards" by prioritizing citations and impact factors. These metrics are flawed and biased against already marginalized groups and fail to accurately capture the breadth of individuals' meaningful scientific impacts. We advocate shifting this outdated value system to advance science through principles of justice, equity, diversity, and inclusion.
View Article and Find Full Text PDFThe global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence.
View Article and Find Full Text PDFHuman activities are altering the structure of ecological communities, often favouring generalists over specialists. For reef fishes, increasingly degraded habitats and climate-driven range shifts may independently augment generalization, particularly if fishes with least-specific habitat requirements are more likely to shift geographic ranges to track their thermal niche. Using a unique global dataset on temperate and tropical reef fishes and habitat composition, we calculated a species generalization index that empirically estimates the habitat niche breadth of each fish species.
View Article and Find Full Text PDF