As on land, oceans exhibit high temporal and spatial temperature variation. This "ocean weather" contributes to the physiological and ecological processes that ultimately determine the patterns of species distribution and abundance, yet is often unrecognized, especially in tropical oceans. Here, we tested the paradigm of temperature stability in shallow waters (<12.
View Article and Find Full Text PDFBody temperature is universally recognized as a dominant driver of biological performance. Although the critical distinction between the temperature of an organism and its surrounding habitat has long been recognized, it remains common practice to assume that trends in air temperature-collected via remote sensing or weather stations-are diagnostic of trends in animal temperature and thus of spatiotemporal patterns of physiological stress and mortality risk. Here, by analysing long-term trends recorded by biomimetic temperature sensors designed to emulate intertidal mussel temperature across the US Pacific Coast, we show that trends in maximal organismal temperature ('organismal climatologies') during aerial exposure can differ substantially from those exhibited by co-located environmental data products.
View Article and Find Full Text PDFR Soc Open Sci
September 2023
The ecological state of the Persian or Arabian Gulf (hereafter 'Gulf') is in sharp decline. Calls for comprehensive ecosystem-based management approaches and transboundary conservation have gone largely unanswered, despite mounting marine threats made worse by climate change. The region's long-standing political tensions add additional complexity, especially now as some Gulf countries will soon adopt ambitious goals to protect their marine environments as part of new global environmental commitments.
View Article and Find Full Text PDFThe ways in which people conceptualize the human-nature relationship have significant implications for proenvironmental values and attitudes, sustainable behavior, and environmental policy measures. Human exceptionalism (HE) is one such conceptual framework, involving the belief that humans and human societies exist independently of the ecosystems in which they are embedded, promoting a sharp ontological boundary between humans and the rest of the natural world. In this paper, we introduce HE in more depth, exploring the impact of HE on perceptions of the human-nature relationship, the role of culture in HE, and speculating on the origins of HE.
View Article and Find Full Text PDFUnderstanding the effects of climate-mediated environmental variation on the distribution of organisms is critically important in an era of global change. We used wavelet analysis to quantify the spatiotemporal (co)variation in daily water temperature for predicting the distribution of cryptic refugia across 16 intertidal sites that were characterized as 'no', 'weak' or 'strong' upwelling and spanned 2000 km of the European Atlantic Coast. Sites experiencing weak upwelling exhibited high synchrony in temperature but low levels of co-variability at monthly to weekly timescales, whereas the opposite was true for sites experiencing strong upwelling.
View Article and Find Full Text PDFBiodiversity can promote ecosystem functioning in both terrestrial and marine environments, emphasizing the necessity of biodiversity conservation in order to preserve critical ecosystem functions and associated services. However, the role of biodiversity in buffering ecosystem functioning under extreme events caused by climate change remains a major scientific issue, especially for intertidal systems experiencing stressors from both terrestrial and marine drivers. We performed a regional-scale field experiment along the Italian coast to investigate the response of unmanipulated intertidal communities (by using a natural biodiversity gradient) to low tide aerial exposure to both ambient and short-term extreme temperatures.
View Article and Find Full Text PDFA quantitative understanding of physiological thermal responses is vital for forecasting species distributional shifts in response to climate change. Many studies have focused on metabolic rate as a global metric for analyzing the sublethal effects of changing environments on physiology. Thermal performance curves (TPCs) have been suggested as a viable analytical framework, but standard TPCs may not fully capture physiological responses, due in part to failure to consider the process of metabolic depression.
View Article and Find Full Text PDFCoral reefs are under increasingly severe threat from climate change and other anthropogenic stressors. Anomalously high seawater temperatures in particular are known to cause coral bleaching (loss of algal symbionts in the family Symbiodiniaceae), which frequently leads to coral mortality. Remote sensing of sea surface temperature (SST) has served as an invaluable tool for monitoring physical conditions that can lead to bleaching events over relatively large scales (e.
View Article and Find Full Text PDFConserv Physiol
August 2019
The rocky intertidal zone is a highly dynamic and thermally variable ecosystem, where the combined influences of solar radiation, air temperature and topography can lead to differences greater than 15°C over the scale of centimetres during aerial exposure at low tide. For most intertidal organisms this small-scale heterogeneity in microclimates can have enormous influences on survival and physiological performance. However, the potential ecological importance of environmental heterogeneity in determining ecological responses to climate change remains poorly understood.
View Article and Find Full Text PDFSensors (Basel)
May 2018
Intertidal habitats are among the harshest environments on the planet, and have emerged as a model system for exploring the ecological impacts of global climate change. Deploying reliable instrumentation to measure environmental conditions such as temperature is challenging in this environment. The application of wireless sensor networks (WSNs) shows considerable promise as a means of optimizing continuous data collection, but poor link quality and unstable connections between nodes, caused by harsh physical environmental conditions, bring about a delay problem.
View Article and Find Full Text PDFEcologically dominant species often define ecosystem states, but as human disturbances intensify, their subordinate counterparts increasingly displace them. We consider the duality of disturbance by examining how environmental drivers can simultaneously act as a stressor to dominant species and as a resource to subordinates. Using a model ecosystem, we demonstrate that CO -driven interactions between species can account for such reversals in dominance; i.
View Article and Find Full Text PDFConnecting the nonlinear and often counterintuitive physiological effects of multiple environmental drivers to the emergent impacts on ecosystems is a fundamental challenge. Unfortunately, the disconnect between the way "stressors" (e.g.
View Article and Find Full Text PDFBiogeographic distributions are driven by cumulative effects of smaller scale processes. Thus, vulnerability of animals to thermal stress is the result of physiological sensitivities to body temperature (), microclimatic conditions, and behavioural thermoregulation. To understand interactions among these variables, we analysed the thermal tolerances of three species of intertidal snails from different latitudes along the Chinese coast, and estimated potential in different microhabitats at each site.
View Article and Find Full Text PDFCurr Biol
February 2017
Reduction in seawater pH due to rising levels of anthropogenic carbon dioxide (CO) in the world's oceans is a major force set to shape the future of marine ecosystems and the ecological services they provide [1,2]. In particular, ocean acidification is predicted to have a detrimental effect on the physiology of calcifying organisms [3]. Yet, the indirect effects of ocean acidification on calcifying organisms, which may counter or exacerbate direct effects, is uncertain.
View Article and Find Full Text PDFUrbanization of coastlines is leading to increased introduction of nutrients from the terrestrial environment to nearshore habitats. While such nutrient influxes can be detrimental to coastal marine organisms due to increased eutrophication and subsequent reduced oxygen, they could also have positive effects (i.e.
View Article and Find Full Text PDFModels of ecological responses to climate change fundamentally assume that predictor variables, which are often measured at large scales, are to some degree diagnostic of the smaller-scale biological processes that ultimately drive patterns of abundance and distribution. Given that organisms respond physiologically to stressors, such as temperature, in highly non-linear ways, small modelling errors in predictor variables can potentially result in failures to predict mortality or severe stress, especially if an organism exists near its physiological limits. As a result, a central challenge facing ecologists, particularly those attempting to forecast future responses to environmental change, is how to develop metrics of forecast model skill (the ability of a model to predict defined events) that are biologically meaningful and reflective of underlying processes.
View Article and Find Full Text PDFAt a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present.
View Article and Find Full Text PDFThermal performance curves (TPCs), which quantify how an ectotherm's body temperature (T ) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key - but often biologically unreasonable - assumptions underlying this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced T We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs. For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change.
View Article and Find Full Text PDFTropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America.
View Article and Find Full Text PDFWe present a Dynamic Energy Budget (DEB) model for the quintessential keystone predator, the rocky-intertidal sea star Pisaster ochraceus. Based on first principles, DEB theory is used to illuminate underlying physiological processes (maintenance, growth, development, and reproduction), thus providing a framework to predict individual-level responses to environmental change. We parameterized the model for P.
View Article and Find Full Text PDFModeling the biogeographic consequences of climate change requires confidence in model predictions under novel conditions. However, models often fail when extended to new locales, and such instances have been used as evidence of a change in physiological tolerance, that is, a fundamental niche shift. We explore an alternative explanation and propose a method for predicting the likelihood of failure based on physiological performance curves and environmental variance in the original and new environments.
View Article and Find Full Text PDFBody temperature is a more pertinent variable to physiological stress than ambient air temperature. Modeling and empirical studies on the impacts of climate change on ectotherms usually assume that body temperature within organisms is uniform. However, many ectotherms show significant within-body temperature heterogeneity.
View Article and Find Full Text PDFNatural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global-ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short-term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate-change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed.
View Article and Find Full Text PDF