98%
921
2 minutes
20
Warming seas, marine heatwaves, and habitat degradation are increasingly widespread phenomena affecting marine biodiversity, yet our understanding of their broader impacts is largely derived from collective insights from independent localized studies. Insufficient systematic broadscale monitoring limits our understanding of the true extent of these impacts and our capacity to track these at scales relevant to national policies and international agreements. Using an extensive time series of co-located reef fish community structure and habitat data spanning 12 years and the entire Australian continent, we found that reef fish community responses to changing temperatures and habitats are dynamic and widespread but regionally patchy. Shifts in composition and abundance of the fish community often occurred within 2 years of environmental or habitat change, although the relative importance of these two mechanisms of climate impact tended to differ between tropical and temperate zones. The clearest of these changes on temperate and subtropical reefs were temperature related, with responses measured by the reef fish thermal index indicating reshuffling according to the thermal affinities of species present. On low latitude coral reefs, the community generalization index indicated shifting dominance of habitat generalist fishes through time, concurrent with changing coral cover. Our results emphasize the importance of maintaining local ecological detail when scaling up datasets to inform national policies and global biodiversity targets. Scaled-up ecological monitoring is needed to discriminate among increasingly diverse drivers of large-scale biodiversity change and better connect presently disjointed systems of biodiversity observation, indicator research, and governance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2022.07.067 | DOI Listing |
J Fish Biol
September 2025
National Oceanic and Atmospheric Administration/NOS/NCCOS/MSE/Biogeography Branch, Silver Spring, Maryland, USA.
Despite snappers' (family Lutjanidae) commercial and ecological significance, knowledge gaps remain regarding life history, ontogeny and ecology across their range in the Caribbean and south Atlantic. There is also a need to explore the efficacy of marine protected areas (MPAs) as a tool for enhancing nursery and spawning habitat conservation for multiple snapper species. Additionally, even as hurricanes and sargassum inundation have become rising issues for coastal communities, there is a scarcity of data on how commercially important species respond to these environmental disturbances.
View Article and Find Full Text PDFMar Environ Res
August 2025
Marine Macroecology and Biogeography Lab, Universidade Federal de Santa Catarina, Brazil.
Transition zones exhibit a unique combination of abiotic characteristics derived from the merging of two distinct areas, hosting communities with different thermal tolerance and distribution ranges. Given these characteristics, these zones are key to unmasking the effects of climate change on biodiversity since rapid changes in the sea temperature can favor some populations more than others. This study aimed to investigate the community structure of reef fish in seven islands of the southwestern Atlantic in a transition zone.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
Boat noise has been shown to distract and cause harm to many marine organisms. Most of the study effort has focused on fish & marine mammals, even though invertebrates represent over 92 % of all marine life. The few studies conducted on invertebrates have demonstrated clear negative effects of anthropogenic noise pollution.
View Article and Find Full Text PDFbioRxiv
August 2025
Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology; Okinawa, 904-0495, Japan.
The diverse pigmentation patterns of animals are crucial for predation avoidance and behavioral display, yet mechanisms underlying this diversity remain poorly understood. In zebrafish, Turing models have been proposed to explain stripe patterns, but it is unclear if they apply to other fishes. In anemonefish (, we identified , a gene orthologous to zebrafish and encoding a connexin involved in pigment cell communication, as responsible for the phenotype.
View Article and Find Full Text PDFZoolog Sci
August 2025
Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan,
Anemonefish have a characteristic vertical white barred color pattern on an orange background made by a specific distribution of three types of pigment cells: melanophores, xanthophores, and iridophores. This color pattern is an interesting alternative model to zebrafish to understand the cellular and molecular basis of complex color pattern formation. Using transmission electron microscopic observations, we have investigated the pigment cell composition in the skin of the anemonefish and found that: 1) white skin comprises iridophores and isolated melanophores; 2) orange skin contains xanthophores and scattered melanophores; and 3) black skin encompasses melanophores only.
View Article and Find Full Text PDF