Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anemonefish have a characteristic vertical white barred color pattern on an orange background made by a specific distribution of three types of pigment cells: melanophores, xanthophores, and iridophores. This color pattern is an interesting alternative model to zebrafish to understand the cellular and molecular basis of complex color pattern formation. Using transmission electron microscopic observations, we have investigated the pigment cell composition in the skin of the anemonefish and found that: 1) white skin comprises iridophores and isolated melanophores; 2) orange skin contains xanthophores and scattered melanophores; and 3) black skin encompasses melanophores only. All three pigment cells can be found in the dermis. Iridophores are also present in the hypodermis, but general cell morphology differs depending on the dermal layer, distinguishing them into S-type and L-type iridophores. While melanophores can mix with xanthophores and iridophores, xanthophores and iridophores are not in direct physical contact, always being separated by melanophores. Anemonefish with differing color patterns than , either color mutants or other anemonefish species, possess different pigment cell distribution and organization reflecting their respective colors. Our analysis provides key data to inform on the mechanism generating the diversity of color patterns present in anemonefishes.

Download full-text PDF

Source
http://dx.doi.org/10.2108/zs240092DOI Listing

Publication Analysis

Top Keywords

color pattern
12
xanthophores iridophores
12
distribution organization
8
pigment cells
8
pigment cell
8
color patterns
8
color
6
melanophores
6
iridophores
6
anemonefish
5

Similar Publications

Anastrepha obliqua, a neotropical pest widely distributed in the Americas, attacks mango and other tropical fruits. In Mexico, it is controlled through integrated pest management, using the Sterile Insect Technique (SIT) as a main component. The applicability of SIT is significantly improved with the use of genetic sexing strains (GSS) that allow the possibility to release exclusively sterile males, the primary component of the technique.

View Article and Find Full Text PDF

Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.

View Article and Find Full Text PDF

Simulating at-sensor hyperspectral satellite data for inland water algal blooms.

Sci Total Environ

September 2025

Department of Geological Sciences and Geological Engineering, Queen's University, 99 University Ave, K7L 3N6 Kingston, Ontario, Canada.

Hyperspectral data have been overshadowed by multispectral data for studying algal blooms for decades. However, newer hyperspectral missions, including the recent Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Ocean Color Instrument (OCI), are opening the doors to accessible hyperspectral data, at spatial and temporal resolutions comparable to ocean color and multispectral missions. Simulation studies can help to understand the potential of these hyperspectral sensors prior to launch and without extensive field data collection.

View Article and Find Full Text PDF

Thermal stability of pigment- and structurally based body coloration in a polymorphic lizard.

J Therm Biol

September 2025

Ethology Lab, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Paterna, Spain.

Animal coloration plays a fundamental role in communication, camouflage, aposematism, mimicry and thermoregulation, and has strong implications for adaptation and diversification. Phenotypic plasticity of color traits can thus affect social, reproductive, antipredator, or thermoregulatory behavior and determining the causes and consequences of color change helps us understand evolution. In contrast to seasonal or ontogenetic color changes, physiological color change in response to fine-scale changes in environmental conditions has received less attention.

View Article and Find Full Text PDF

Can thermoregulation explain differences in habitat selection and distribution range in Calopteryx damselflies?

J Therm Biol

September 2025

Section of Ecology, Department of Biology, University of Turku, FI-20014, Turku, Finland. Electronic address:

Body temperature is important for the behavioural and ecological performance of winged insects whose body temperature must exceed ambient temperature to fly. Although thermoregulation may affect geographical distribution and habitat selection of closely related species. The few studies that have been done on this subject have shown mixed results.

View Article and Find Full Text PDF