Publications by authors named "Fabien Leprieur"

To predict the spatial responses of biodiversity to climate change, studies typically rely on species-specific approaches, such as species distribution models. In this study, we propose an alternative methodology that investigates the collective response of species groups by modelling biogeographical regions. Biogeographical regions are areas defined by homogeneous species compositions and separated by barriers to dispersal.

View Article and Find Full Text PDF

Tropical reef fishes exhibit a large disparity of organismal morphologies contributing to their astonishing biodiversity. Morphological disparity, scaling from differences among individuals within populations to differences among species, is governed by ecological and evolutionary processes. Here, we examined the relationship between intra- and interspecific disparity in 1111 individuals from 17 tropical reef fish species, representing 10 families with different dispersal abilities, across four Indian Ocean regions.

View Article and Find Full Text PDF

While acquiring age information is crucial for efficient stock management and biodiversity conservation, traditional aging methods fail to offer a universal, non-invasive, and precise way of estimating a wild animal's age. DNA methylation from tissue DNA (tDNA) was recently proposed as a method to overcome these issues and showed more accurate results than telomere-length-based age assessments. Here, we used environmental DNA (eDNA) for the first time as a template for age estimation, focusing on the larval phase (10-24 days post-hatch) of cultured (seabass), a species of major economic and conservation interest.

View Article and Find Full Text PDF

Our understanding of speciation processes in marine environments remains very limited and the role of different reproductive barriers are still debated. While physical barriers were considered important drivers causing reproductive isolation, recent studies highlight the importance of climatic and hydrological changes creating unsuitable habitat conditions as factors promoting population isolation. Although speciation in marine fishes has been investigated from different perspectives, these studies often have a limited geographical extant.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found no overall correlation between genetic diversity and species richness across different taxonomic levels or areas, but did observe a positive link when communities were defined specifically at the subfamily or family level, excluding the Western Indian Ocean.
  • * The findings emphasize that how communities are categorized and the spatial scale considered significantly influence our understanding of biodiversity patterns and the evolutionary processes affecting them.
View Article and Find Full Text PDF

Marine protected areas (MPAs) are the most widely applied tool for marine biodiversity conservation, yet many gaps remain in our understanding of their species-specific effects, partly because the socio-environmental context and spatial autocorrelation may blur and bias perceived conservation outcomes. Based on a large data set of nearly 3000 marine fish surveys spanning all tropical regions of the world, we build spatially explicit models for 658 fish species to estimate species-specific responses to protection while controlling for the environmental, habitat and socio-economic contexts experienced across their geographic ranges. We show that the species responses are highly variable, with ~40% of fishes not benefitting from protection.

View Article and Find Full Text PDF

Elasmobranchs (sharks, rays and skates) are among the most threatened marine vertebrates, yet their global functional diversity remains largely unknown. Here, we use a trait dataset of >1000 species to assess elasmobranch functional diversity and compare it against other previously studied biodiversity facets (taxonomic and phylogenetic), to identify species- and spatial- conservation priorities. We show that threatened species encompass the full extent of functional space and disproportionately include functionally distinct species.

View Article and Find Full Text PDF

Animals and plants worldwide are structured in global biogeographic regions, which were shaped by major geologic forces during Earth history. Recently, humans have changed the course of events by multiplying global pathways of introduction for nonindigenous species and propagating local species extirpations. Here, we report on how introductions and extirpations have changed the distributions of freshwater fishes worldwide and how it affected their natural biogeographic regions.

View Article and Find Full Text PDF

We aim to assess the influence of phylogenetic scale on the relationships of taxonomic and phylogenetic turnovers with environment for angiosperms in China. Specifically, we quantify the effects of contemporary climate on β-diversity at different phylogenetic scales representing different evolutionary depths of angiosperms. We sampled a latitudinal gradient and a longitudinal gradient of angiosperm assemblages across China (each ≥3400 km).

View Article and Find Full Text PDF

Past environmental changes are expected to have profoundly impacted diversity dynamics through time. While some previous studies showed an association between past climate changes or tectonic events and important shifts in lineage diversification, it is only recently that past environmental changes have been explicitly integrated in diversification models to test their influence on diversification rates. Here, we used a global reconstruction of tropical reef habitat dynamics during the Cenozoic and phylogenetic diversification models to test the influence of (i) major geological events, (ii) reef habitat fragmentation and (iii) reef area on the diversification of 9 major clades of tropical reef fish (Acanthuridae, Balistoidea, Carangoidea, Chaetodontidae, Haemulinae, Holocentridae, Labridae, Pomacentridae and Sparidae).

View Article and Find Full Text PDF

Generating genomic data for 19 tropical reef fish species of the Western Indian Ocean, we investigate how species ecology influences genetic diversity patterns from local to regional scales. We distinguish between the , and components of genetic diversity, which we subsequently link to six ecological traits. We find that the and components of genetic diversity are strongly correlated so that species with a high total regional genetic diversity display systematically high local diversity.

View Article and Find Full Text PDF

The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services, but at present only 2.7% of the ocean is highly protected.

View Article and Find Full Text PDF

Species' traits, rather than taxonomic identities, determine community assembly and ecosystem functioning, yet biogeographic patterns have been far less studied for traits. While both environmental conditions and evolutionary history shape trait biogeography, their relative contributions are largely unknown for most organisms. Here, we explore the global biogeography of reef fish traits for 2,786 species from 89 ecoregions spanning eight marine realms with contrasting environmental conditions and evolutionary histories.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change may soon cause more extinctions in marine mammals than habitat loss or overexploitation, threatening vital ecological roles in ocean ecosystems.
  • A study identified the North Pacific Ocean, Greenland Sea, and Barents Sea as the most vulnerable regions for marine mammals under both high and low greenhouse gas emission scenarios.
  • Key threatened species like the North Pacific right whale and dugong exhibited unique traits, and their potential extinction could lead to significant losses in functional diversity, impacting marine ecosystems significantly.
View Article and Find Full Text PDF

Using the most comprehensive fish occurrence database, we evaluated the importance of ecological and historical drivers in diversity patterns of subdrainage basins across the Amazon system. Linear models reveal the influence of climatic conditions, habitat size and sub-basin isolation on species diversity. Unexpectedly, the species richness model also highlighted a negative upriver-downriver gradient, contrary to predictions of increasing richness at more downriver locations along fluvial gradients.

View Article and Find Full Text PDF

We develop a spatially explicit model of diversification based on palaeohabitat to explore the predictions of four major hypotheses potentially explaining the latitudinal diversity gradient (LDG), namely, the 'time-area', 'tropical niche conservatism', 'ecological limits' and 'evolutionary speed' hypotheses. We compare simulation outputs to observed diversity gradients in the global reef fish fauna. Our simulations show that these hypotheses are non-mutually exclusive and that their relative influence depends on the time scale considered.

View Article and Find Full Text PDF

The original version of this Article contained a plotting error in Fig. 3g. The Serranidae and Siganidae families were misplaced in the plotted phylogeny.

View Article and Find Full Text PDF

In the face of the biodiversity crisis, it is argued that we should prioritize species in order to capture high functional diversity (FD). Because species traits often reflect shared evolutionary history, many researchers have assumed that maximizing phylogenetic diversity (PD) should indirectly capture FD, a hypothesis that we name the "phylogenetic gambit". Here, we empirically test this gambit using data on ecologically relevant traits from >15,000 vertebrate species.

View Article and Find Full Text PDF

A growing interest is devoted to global-scale approaches in ecology and evolution that examine patterns and determinants of species diversity and the threats resulting from global change. These analyses obviously require global datasets of species distribution. Freshwater systems house a disproportionately high fraction of the global fish diversity considering the small proportion of the earth's surface that they occupy, and are one of the most threatened habitats on Earth.

View Article and Find Full Text PDF