Publications by authors named "Ranran Xing"

Consumer-driven blueberry quality improvement requires a deeper understanding of how metabolic composition influences sensory perception. This study integrates untargeted metabolomics and machine learning to identify biomarker metabolites shaping sensory attributes across blueberry cultivars and geographical origins. Metabolite profiling of four cultivars from four areas revealed significant cultivar- and geographical-dependent differences in metabolic patterns of volatile and non-volatile compounds.

View Article and Find Full Text PDF

This study investigated the oxidative degradation of lipids in soybean oil used for frying French fries (SOFFF) and chicken breast meat (SOFCBM) using integrated volatolomics and oxidative lipidomics. Water in the food matrix promotes triglyceride hydrolysis. The rate of lipid hydrolysis was higher in SOFCBM, whereas the rate of lipid oxidation was higher in SOFFF.

View Article and Find Full Text PDF

Glycoproteins, which are involved in numerous biological functions, are among the most critical functional ingredients in an edible bird's nest (EBN). To gain a comprehensive understanding of the glycoprotein species within EBN, a label-free, site-specific glycoproteomic approach was used to analyze their N-glycoproteins, N-glycopeptides, and N-glycans systematically. A total of 127 N-glycoproteins were identified in EBN, of which 72 were found in house-EBN and 63 in cave-EBN, yielding 4195 and 5649 glycopeptides, respectively.

View Article and Find Full Text PDF

Mushroom poisoning contributes significantly to global foodborne diseases and related fatalities. Amanita mushrooms frequently cause such poisonings; however, identifying these toxic species is challenging due to the unavailability of fresh and intact samples. It is often necessary to analyze residues, vomitus, or stomach extracts to obtain DNA sequences for the identification of species responsible for causing food poisoning.

View Article and Find Full Text PDF

The oxidative degradation of lipids in vegetable oils during thermal processing may present a risk to human health. However, not much is known about the evolution of lipids and their non-volatile derivatives in vegetable oils under different thermal processing conditions. In the present study, a pseudotargeted oxidative lipidomics approach was developed and the evolution of lipids and their non-volatile derivatives in palm oil, rapeseed oil, soybean oil, and flaxseed oil under different thermal processing conditions was investigated.

View Article and Find Full Text PDF

Background: Hyperbaric oxygenation (HBO) therapy can improve locomotor dysfunction following spinal cord injury (SCI). Emerging evidence has demonstrated that sirtuin1 (SIRT1) exerts protective effects on neurons. However, whether HBO alleviates locomotor dysfunction by regulating SIRT1 is unclear.

View Article and Find Full Text PDF

Black soybeans are extensively planted and consumed in China due to their high nutritional value and numerous health benefits. However, very few is known about the characteristic metabolites of black soybeans from different geographical origins in China. In the present study, 31 black soybean samples were collected from 11 main producing provinces in China.

View Article and Find Full Text PDF

Not from concentrate (NFC) orange juice is minimally processed, natural-appearing food, and has become more popular. Sterilization is an important stage for NFC orange juice production. Here we present a comprehensive analysis of the effect of sterilization on the metabolites of NFC orange juices, including three thermal (pasteurization, high-temperature short time, and ultra-high temperature) and one nonthermal (high hydrostatic pressure) method.

View Article and Find Full Text PDF

Functional food such as, quinoa, coix seed, wild rice and chickpea have experienced rapidly increasing demand globally and exhibit high economic values. Nevertheless, a method for rapid yet accurate detection of these source components is absent, making it difficult to identify commercially available food with labels indicating the presence of relevant components. In this study, we constructed a real-time quantitative polymerase chain reaction (qPCR) method for rapid detection of quinoa, coix seed, wild rice and chickpea in food to identify the authenticity of such food.

View Article and Find Full Text PDF

DNA offers significant advantages in information density, durability, and replication efficiency compared with information labeling solutions using electronic, magnetic, or optical devices. Synthetic DNA containing specific information via gene editing techniques is a promising identifying approach. We developed a new traceability approach to convert traditional digitized information into DNA sequence information.

View Article and Find Full Text PDF

Puffer fish is a type of precious high-end aquatic product, is widely popular in Asia, especially in China and Japan, even though it naturally harbors a neurotoxin known as tetrodotoxin (TTX) that is poisonous to humans and causes food poisoning. With the increasing trade demand, which frequently exceeds existing supply capacities, fostering fraudulent practices, such as adulteration of processed products with non-certified farmed wild puffer fish species. To determine the authenticity of puffer fish processed food, we developed a real-time qPCR method to detect five common puffer fish species in aquatic products: , , , , and .

View Article and Find Full Text PDF

High hydrostatic pressure (HHP) is a non-thermal method of sterilizing orange juice. However, knowledge of the quality variation during its storage is limited. This study aimed to comprehensively analyze metabolite variations during HHP orange juice storage using gas chromatography-mass spectrometer and liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF
Article Synopsis
  • The study compared the oxidation products of four vegetable oils (palm, soybean, rapeseed, and flaxseed) during thermal processing using lipidomics, volatolomics, and simulations.
  • Different vegetable oils exhibited unique volatile profiles due to variations in their lipid compositions.
  • The research identified potential markers for different types of oils based on their fatty acid profiles, introducing a new method to analyze changes in volatile compounds during oil processing.
View Article and Find Full Text PDF

Previous studies on deep learning (DL) applications in pathology have focused on pathologist-versus-algorithm comparisons. However, DL will not replace the breadth and contextual knowledge of pathologists; rather, only through their combination may the benefits of DL be achieved. A fully crossed multireader multicase study was conducted to evaluate DL assistance with pathologists' diagnosis of gastric cancer.

View Article and Find Full Text PDF

The integration of lipidomics and metabolomics approaches, based on UPLC-QTOF-MS technology coupled with chemometrics, was established to authenticate camellia oil adulterated with rapeseed oil, peanut oil, and soybean oil. Lipidomics revealed that the glyceride profile provides a prospective authentication of camellia oil, but no characteristic markers were available. Sixteen characteristic markers were identified by metabolomics.

View Article and Find Full Text PDF

Available nuclear gene sequences for meat detection are still rare and little applicability in the investigation of new types of meat adulteration such as fox, mink and raccoon dog was performed. In the present work, we developed a reliable qualitative and quantitative detection method for fur-bearing animal meat based on droplet digital PCR (ddPCR). Three sets of primers and probes targeted nuclear genes for fox, mink and raccoon dog were designed for ddPCR system; In addition, turkey was selected as internal reference to transform the copy numbers to the fraction of target species.

View Article and Find Full Text PDF

Mislabelling is a significant manifestation of food fraud. Traditional Sanger sequencing technology is the gold standard for seafood species identification. However, this method is not suitable for analysing processed samples that may contain more than one species.

View Article and Find Full Text PDF

Currently, the authentication of camellia oil (CAO) has become very important due to the possible adulteration of CAO with cheaper vegetable oils such as rapeseed oil (RSO). Therefore, we report a Fourier transform infrared (FTIR) spectroscopic method for detecting the authenticity of CAO and quantifying the blended levels of RSO. In this study, two characteristic spectral bands (1119 cm and 1096 cm) were selected and used for monitoring the purity of CAO.

View Article and Find Full Text PDF

This study used DNA barcoding and DNA mini-barcoding to test a variety of animal-derived food products sold in the Chinese market for potential mislabeling. Samples (52) including meat, poultry, and fish purchased from retail and online sources were examined. Regions of cytochrome C oxidase I (COI) gene (~650 bp) and 16S rRNA (~220 bp) were used as full- and mini-barcode markers, respectively.

View Article and Find Full Text PDF

Edible bird's nest (EBN) has been traditionally regarded as a kind of medicinal and healthy food in Asia. However, economically motivated adulteration (EMA) has been an issue in the EBN supply chain. To develop an accurate high-throughput approach for detecting EBN and its adulterants (exemplified by porcine skin, swim bladder, white fungus, and egg white), shotgun proteomics was applied for discovery of specific peptides that were subsequently converted into scheduled multiple reaction monitoring (MRM) transitions.

View Article and Find Full Text PDF

The objective of this work was to study the correlation between the variation of phenolic compounds and sensory characteristics in white wine during bottle storage and to explore the compounds that affected sensory evolution. Chardonnay ( L. cv.

View Article and Find Full Text PDF

Rationale: To develop a reliable and accurate method for the identification of anthocyanins and their subsequent derivatives formed during red grape fermentation and wine maturation.

Methods: By using a Poroshell 120 EC-C18 column in a high-performance liquid chromatography/triple-quadrupole tandem mass spectrometry (HPLC/QqQ-MS/MS) system, combined with multiple reaction monitoring (MRM), it was possible to establish and validate a method for the determination of anthocyanin and a range of complex reaction products. A selected range of six 3-O-glucosidic anthocyanins were used as standards.

View Article and Find Full Text PDF

It has been widely accepted that anthocyanidin 3,5-O-diglucosides do not exist in Vitis vinifera L. Cabernet Sauvignon (CS) berries. However, our anthocyanin analyses using HPLC-ESI-MS/MS detected the existence of a low level of anthocyanidin 3,5-O-diglucosides in the Cabernet Sauvignon grape berries grown in China.

View Article and Find Full Text PDF