Publications by authors named "Peng W Chee"

Cotton is the most widely cultivated natural fiber crop worldwide, yet it is highly susceptible to various diseases and pests that significantly compromise both yield and quality. To enable rapid and accurate diagnosis of cotton diseases and pests-thus supporting the development of effective control strategies and facilitating genetic breeding research-we propose a lightweight model, the Resource-efficient Cotton Network (RF-Cott-Net), alongside an open-source image dataset, CCDPHD-11, encompassing 11 disease categories. Built upon the MobileViTv2 backbone, RF-Cott-Net integrates an early exit mechanism and quantization-aware training (QAT) to enhance deployment efficiency without sacrificing accuracy.

View Article and Find Full Text PDF

Advances in spinning technology have increased the demand for upland cotton ( L.) cultivars with superior fiber quality. However, progress in breeding for traits such as fiber length is constrained by limited phenotypic and genetic diversity within upland cotton.

View Article and Find Full Text PDF

High resolution three-dimensional (3D) point clouds enable the mapping of cotton boll spatial distribution, aiding breeders in better understanding the correlation between boll positions on branches and overall yield and fiber quality. This study developed a segmentation workflow for point clouds of 18 cotton genotypes to map the spatial distribution of bolls on the plants. The data processing workflow includes two independent approaches to map the vertical and horizontal distribution of cotton bolls.

View Article and Find Full Text PDF

Upland cotton () faces the challenge of limited genetic diversity in the elite or improved gene pool. To address this issue, we explored alleles contributed by five 'converted' exotic lines sampling most of the undomesticated botanical races of , in BCF and F populations. Joint analysis of all populations along with population-specific analyses identified 38 unique QTL for six different fiber quality traits.

View Article and Find Full Text PDF

The reniform nematode ( Linford & Oliveira) is a serious pathogen of Upland cotton ( L.) wherever it is grown throughout the United States. Upland cotton resistance to .

View Article and Find Full Text PDF

Background: The Southern root-knot nematode (Meloidogyne incognita) poses a substantial threat to cotton (Gossypium hirsutum L.) by causing significant agricultural losses. Host plant resistance is the most plausible approach for minimizing these losses.

View Article and Find Full Text PDF
Article Synopsis
  • - Pecan scab, caused by Venturia effusa, severely impacts pecan crops in the southeastern U.S., with resistance influenced by host genetics interacting with different disease forms.
  • - A transcriptome analysis of the 'Desirable' pecan cultivar revealed distinct gene expression patterns when exposed to both pathogenic and non-pathogenic scab isolates, particularly highlighting early defense mechanisms.
  • - The study identified key gene modules linked to defense responses, suggesting that the early activation of signal transduction and barrier formation are critical for resistance against the fungus, laying the groundwork for future resistance gene research.
View Article and Find Full Text PDF

In this study, we investigated the potential involvement of endogenous viral elements (EVEs) in the development of apical tissue necrosis, resulting in the terminal abortion of upland cotton ( L.) in Georgia. The high-throughput sequence analysis of symptomatic and asymptomatic plant tissue samples revealed near-complete EVE-Georgia (EVE-GA) sequences closely related to caulimoviruses.

View Article and Find Full Text PDF
Article Synopsis
  • Cotton is a crucial global fiber crop, but its yield and quality vary significantly due to genetic differences and environmental influences.
  • Modern breeding practices face challenges related to a limited genetic pool, making it harder to achieve future yield improvements.
  • Researchers created high-quality reference genomes for three cotton cultivars and updated a genetic standard, revealing unexpected genetic diversity that can inform future breeding for better fiber quality and sustainability.
View Article and Find Full Text PDF

Analysis of fiber quality lncRNAs and their target genes from a pair of Gossypium mustelinum near-isogenic lines provide new prospects for improving the fiber quality of Upland cotton. Long noncoding RNAs (lncRNAs) are an important part of genome transcription and play roles in a wide range of biological processes in plants. In this research, a pair of near-isogenic cotton lines, namely, a Gossypium mustelinum introgression line (IL9) with outstanding fiber quality and its recurrent Upland cotton parent (PD94042), were used as the experimental materials.

View Article and Find Full Text PDF

Taxonomy: Cotton leafroll dwarf virus (CLRDV) is a member of the genus Polerovirus, family Solemoviridae. Geographical Distribution: CLRDV is present in most cotton-producing regions worldwide, prominently in North and South America.

Physical Properties: The virion is a nonenveloped icosahedron with T = 3 icosahedral lattice symmetry that has a diameter of 26-34 nm and comprises 180 molecules of the capsid protein.

View Article and Find Full Text PDF

Plant architecture, flowering time and maturity traits are important determinants of yield and fiber quality of cotton. Genetic dissection of loci determining these yield and quality components is complicated by numerous loci with alleles conferring small differences. Therefore, mapping populations segregating for smaller numbers and sizes of introgressed segments is expected to facilitate dissection of these complex quantitative traits.

View Article and Find Full Text PDF

Ethyl methanesulfonate (EMS) mutagenesis offers important advantages for improving crops, such as cotton, with limited diversity in elite gene pools. EMS-induced point mutations are less frequently associated with deleterious traits than alleles from wild or exotic germplasm. From 157 mutant lines that have significantly improved fiber properties, we focused on nine mutant lines here.

View Article and Find Full Text PDF

Cotton ( L.) is the most important fiber crop worldwide. Here, transcriptome analysis was conducted on developing fibers of a introgression line, IL9, and its recurrent parent, PD94042, at 17 and 21 days post-anthesis (dpa).

View Article and Find Full Text PDF

Cotton is widely grown in the southern US and is its most significant pathogen. The germplasm line M-120 RNR is highly resistant to due to two resistance QTLs (quantitative trait loci), and . Both QTLs reduce total egg production, but the QTLs affect development at different life stages.

View Article and Find Full Text PDF

Gene introgression from wild species has been shown to be a feasible approach for fiber quality improvement in Upland cotton. Previously, we developed an interspecific × advanced-backcross population and mapped over one hundred QTL for fiber quality traits. In the current study, a trait-based selective genotyping approach was utilized to prioritize a small subset of introgression lines with high phenotypic values for different fiber quality traits, to simultaneously validate multiple fiber quality QTL in a single experiment.

View Article and Find Full Text PDF

Host plant resistance is the most practical approach to control the Southern root-knot nematode (Meloidogyne incognita; RKN), which has emerged as one of the most serious economic pests of Upland cotton (Gossypium hirsutum L.). Previous QTL analyses have identified a resistance locus on chromosome 11 (qMi-C11) affecting galling and another locus on chromosome-14 (qMi-C14) affecting egg production.

View Article and Find Full Text PDF

The interaction between f. sp. (Fov) and (root-knot nematode) resulting in Fusarium wilt (FW) of cotton is well-known.

View Article and Find Full Text PDF

Quantitative trait loci (QTLs) and impart a high level of resistance to in cotton. Breeders had previously backcrossed both QTLs into the susceptible Coker 201 to create the highly resistant M-120 RNR, and we crossed Coker 201 and M-120 RNR to create near-isogenic lines with either or . Previous work suggests different modes of action for and .

View Article and Find Full Text PDF

Plant breeding programs and a wide range of plant science applications would greatly benefit from the development of in-field high throughput phenotyping technologies. In this study, a terrestrial LiDAR-based high throughput phenotyping system was developed. A 2D LiDAR was applied to scan plants from overhead in the field, and an RTK-GPS was used to provide spatial coordinates.

View Article and Find Full Text PDF

The molecular genetic basis of cotton fiber strength and fineness in crosses between and (Upland cotton) was dissected using 21 BCF and 12 corresponding BCF and BCF families. The BCF families were genotyped with simple sequence repeat markers from a by linkage map, and the three generations of BC-derived families were phenotyped for fiber strength (STR) and fineness (Micronaire, MIC). A total of 42 quantitative trait loci (QTLs) were identified through one-way analysis of variance, including 15 QTLs for STR and 27 for MIC, with the percentage of variance explained by individual loci averaging 13.

View Article and Find Full Text PDF

This study reports transmission genetics of chromosomal segments into Gossypium hirsutum from its most distant euploid relative, Gossypium mustelinum . Mutilocus interactions and structural rearrangements affect introgression and segregation of donor chromatin. Wild allotetraploid relatives of cotton are a rich source of genetic diversity that can be used in genetic improvement, but linkage drag and non-Mendelian transmission genetics are prevalent in interspecific crosses.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small 20-24nt molecules that have been well studied over the past decade due to their important regulatory roles in different cellular processes. The mature sequences are more conserved across vast phylogenetic scales than their precursors and some are conserved within entire kingdoms, hence, their loci and function can be predicted by homology searches. Different studies have been performed to elucidate miRNAs using prediction methods but due to complex regulatory mechanisms or false positive predictions, not all of them express in reality and sometimes computationally predicted mature transcripts differ from the actual expressed ones.

View Article and Find Full Text PDF

A fiber length QTL, qFL-chr1, was fine mapped to a 0.9 cM interval of cotton chromosome 1. Two positional candidate genes showed positive correlation between gene expression level and fiber length.

View Article and Find Full Text PDF