Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The molecular genetic basis of cotton fiber strength and fineness in crosses between and (Upland cotton) was dissected using 21 BCF and 12 corresponding BCF and BCF families. The BCF families were genotyped with simple sequence repeat markers from a by linkage map, and the three generations of BC-derived families were phenotyped for fiber strength (STR) and fineness (Micronaire, MIC). A total of 42 quantitative trait loci (QTLs) were identified through one-way analysis of variance, including 15 QTLs for STR and 27 for MIC, with the percentage of variance explained by individual loci averaging 13.86 and 14.06%, respectively. Eighteen of the 42 QTLs were detected at least twice near the same markers in different generations/families or near linked markers in the same family, and 28 of the 42 QTLs were identified in both mixed model-based composite interval mapping and one-way variance analyses. Alleles from increased STR for eight of 15 and reduced MIC for 15 of 27 QTLs. Significant among-family genotypic effects ( < 0.001) were detected in 13 and 10 loci for STR and MIC respectively, and five loci showed significant ( < 0.001) genotype × family interaction for MIC. These results support the hypothesis that fiber quality improvement for Upland cotton could be realized by introgressing alleles although complexities due to the different effects of genetic background on introgressed chromatin might be faced. Building on prior work with , and , QTL mapping involving introgression of alleles offers new allelic variation to Upland cotton germplasm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661169PMC
http://dx.doi.org/10.3389/fpls.2017.01848DOI Listing

Publication Analysis

Top Keywords

fiber strength
12
upland cotton
12
strength fineness
8
bcf families
8
qtls identified
8
str mic
8
mic
5
qtls
5
advanced backcross
4
backcross qtl
4

Similar Publications

Ordered alkene-alkyne alternating conjugation in polyimides: A dual-strategy approach to ultralow dielectric constant and high thermal conductivity.

J Colloid Interface Sci

September 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. Electronic address:

Polyimide (PI) faces significant challenges in highly integrated and high-frequency electronic devices due to its inherently low thermal conductivity and relatively high dielectric constant (D). In this study, topologically micro-crosslinked PI films were synthesized by incorporating highly conjugated multi-amino polydiacetylene (MAPDA) into a fluorinated PI matrix. The unique alkene-alkyne alternating conjugated structure of MAPDA, combined with the strong electron-withdrawing trifluoromethyl groups in the matrix, promotes charge redistribution and reduces the dipole moment and polarizability.

View Article and Find Full Text PDF

Multifunctional triple-network ionic hydrogel sensors engineered by Al/Zn bimetallic salt solution: From cellulose solvent to conductive network architecture.

J Colloid Interface Sci

September 2025

Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China. Electronic address:

Ionic conductive hydrogels show promise for flexible sensors in wearables and e-skins, but balancing mechanical strength with high conductivity remains challenging. Herein, a triple-network ionic conductive hydrogel based on poly(acrylic acid) (PAA) was developed, synergistically reinforced by dissolved cellulose (dCel) and aramid nanofibers (ANF), with Al/Zn bimetallic ions serving as the conductive medium. Intriguingly, dCel was in-situ generated using the concentrated Al/Zn bimetallic salt solutions as the cellulose solvent, following the complete dissolution of the pulp fibers driven by the intensive ionic hydration of Al/Zn ions.

View Article and Find Full Text PDF

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF

High-strength Janus cellulose/MXene composite paper from deep eutectic solvent-carboxymethylated eucalyptus fibers for electromagnetic shielding.

Int J Biol Macromol

September 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou, 510640, China.

The development of cellulose-based electromagnetic shielding materials is critical for the advancement of sustainable, lightweight, and flexible electronic devices. Most high-performance composites rely on nanocellulose, which is expensive and energy-intensive to produce. In this work, we employ chemically modified conventional eucalyptus pulp fibers (non-nano) to fabricate Janus-structured cellulose/MXene composite papers.

View Article and Find Full Text PDF

Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.

View Article and Find Full Text PDF