Soybean () production is greatly affected by persistent and/or intermittent droughts in rainfed soybean-growing regions worldwide. Symbiotic N fixation (SNF) in soybean can also be significantly hampered even under moderate drought stress. The objective of this study was to identify genomic regions associated with shoot carbon isotope ratio (δC) as a surrogate measure for water use efficiency (WUE), nitrogen isotope ratio (δN) to assess relative SNF, N concentration ([N]), and carbon/nitrogen ratio (C/N).
View Article and Find Full Text PDFIn the current genomic era, the search and deployment of new semi-dwarf alleles have continued to develop better plant types in all cereals. We characterized an agronomically optimal semi-dwarf mutation in Zea mays L. and a parallel polymorphism in Sorghum bicolor L.
View Article and Find Full Text PDFWhite mold (WM) is a major disease in common bean ( L.), and its complex quantitative genetic control limits the development of WM resistant cultivars. WM2.
View Article and Find Full Text PDFPeatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S.
View Article and Find Full Text PDFG3 (Bethesda)
March 2023
In the North-Central United States, lowland ecotype switchgrass can increase yield by up to 50% compared with locally adapted but early flowering cultivars. However, lowland ecotypes are not winter tolerant. The mechanism for winter damage is unknown but previously has been associated with late flowering time.
View Article and Find Full Text PDFMicronutrient deficiency affects half of the world’s population, mostly in developing countries. Severe health issues such as anemia and inadequate growth in children below five years of age and pregnant women have been linked to mineral deficiencies (mostly zinc and iron). Improving the mineral content in staple crops, also known as mineral biofortification, remains the best approach to address mineral malnutrition.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2022
Rapid environmental change can lead to population extinction or evolutionary rescue. The global staple crop sorghum () has recently been threatened by a global outbreak of an aggressive new biotype of sugarcane aphid (SCA; ). We characterized genomic signatures of adaptation in a Haitian breeding population that had rapidly adapted to SCA infestation, conducting evolutionary population genomics analyses on 296 Haitian lines versus 767 global accessions.
View Article and Find Full Text PDFGenome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence-absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the 'Pawnee' cultivar.
View Article and Find Full Text PDFCamelina [Camelina sativa (L.) Crantz] is an oilseed crop in the Brassicaceae family that is currently being developed as a source of bioenergy and healthy fatty acids. To facilitate modern breeding efforts through marker-assisted selection and biotechnology, we evaluated genetic variation among a worldwide collection of 222 camelina accessions.
View Article and Find Full Text PDFTepary bean (Phaseolus acutifolis A. Gray), native to the Sonoran Desert, is highly adapted to heat and drought. It is a sister species of common bean (Phaseolus vulgaris L.
View Article and Find Full Text PDFBackground: Plants can transmit somatic mutations and epimutations to offspring, which in turn can affect fitness. Knowledge of the rate at which these variations arise is necessary to understand how plant development contributes to local adaption in an ecoevolutionary context, particularly in long-lived perennials.
Results: Here, we generate a new high-quality reference genome from the oldest branch of a wild Populus trichocarpa tree with two dominant stems which have been evolving independently for 330 years.
Nat Biotechnol
October 2020
Wild and weedy relatives of domesticated crops harbor genetic variants that can advance agricultural biotechnology. Here we provide a genome resource for the wild plant green millet (Setaria viridis), a model species for studies of C grasses, and use the resource to probe domestication genes in the close crop relative foxtail millet (Setaria italica). We produced a platinum-quality genome assembly of S.
View Article and Find Full Text PDFEnvironmental stress is a major driver of ecological community dynamics and agricultural productivity. This is especially true for soil water availability, because drought is the greatest abiotic inhibitor of worldwide crop yields. Here, we test the genetic basis of drought responses in the genetic model for C perennial grasses, Panicum hallii, through population genomics, field-scale gene-expression (eQTL) analysis, and comparison of two complete genomes.
View Article and Find Full Text PDFBackground: Understanding how and why genetic variation is partitioned across geographic space is of fundamental importance to understanding the nature of biological species. How geographical isolation and local adaptation contribute to the formation of ecotypically differentiated groups of plants is just beginning to be understood through population genomic studies. We used whole genome sequencing combined with association study of climate to discover the drivers of differentiation in the perennial C4 grass Panicum hallii.
View Article and Find Full Text PDFClimate change models predict temporal and spatial shifts in precipitation resulting in more frequent incidents of flooding, particularly in regions with poor soil drainage. In these flooding conditions, crop losses are inevitable due to exposure of plants to hypoxia and the spread of root rot diseases. Improving the tolerance of bean cultivars to flooding is crucial to minimize crop losses.
View Article and Find Full Text PDFThe presence of seed color in common bean (Phaseolus vulgaris) requires the dominant-acting P (pigment) gene, and white seed is a recessive phenotype in all domesticated races of the species. P was classically associated with seed size, thus describing it as the first genetic marker for a quantitative trait. The molecular structure of P was characterized to understand the selection of white seeds during bean diversification and the relationship of P to seed weight.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to a late diagnosis and poor response to available treatments. There is a need to identify complementary treatment strategies that will enhance the efficacy and reduce the toxicity of currently used therapeutic approaches. We investigated the ability of a known ROS inducer, piperlongumine (PL), to complement the modest anti-cancer effects of the approved chemotherapeutic agent gemcitabine (GEM) in PDAC cells and .
View Article and Find Full Text PDFCommon bean ( L.) is the most consumed edible grain legume worldwide and contains a wide range of nutrients for human health including dietary fiber. Diets high in beans are associated with lower rates of chronic diseases such as obesity and type 2 diabetes, and the content of dietary fibers varies among different market classes of dry bean.
View Article and Find Full Text PDF