Publications by authors named "Michael Tscherner"

Polymicrobial co- and superinfections involving bacterial and fungal pathogens pose serious challenges for diagnosis and therapy, and are associated with elevated morbidity and mortality. However, the metabolic dynamics of bacterial-fungal interactions (BFI) and the resulting impact on disease outcome remain largely unknown. The fungus Aspergillus fumigatus and the bacterium Klebsiella pneumoniae are clinically important pathogens sharing common niches in the human body, especially in the lower respiratory tract.

View Article and Find Full Text PDF
Article Synopsis
  • Pathogens, like the fungus Candida albicans, need to change and hide from the immune system to survive and cause disease.
  • Researchers found that a special complex called HIR helps this fungus adapt by changing how its genes are controlled and accessed.
  • When HIR is not working, the fungus becomes faster at finding food and becomes more dangerous to the immune system, making it harder to fight off in infections.
View Article and Find Full Text PDF
Article Synopsis
  • - Health care facilities are threatened by a new human fungal pathogen that is resistant to many antifungal drugs and lacks effective diagnostic tools, leading to concerns about its genetic and phenotypic diversity across different regions.
  • - The study focuses on the gene expression differences in clinical isolates with varying antifungal resistance, using antifungal susceptibility screening and comparative transcriptional profiling to highlight significant variations.
  • - Findings indicate that even small changes in gene expression can influence drug response, and large-scale transcriptional profiling could assist in predicting the behavior of patient isolates, ultimately aiding in selecting more effective antifungal treatments.
View Article and Find Full Text PDF

Human fungal pathogens often encounter fungicidal stress upon host invasion, but they can swiftly adapt by transcriptional reprogramming that enables pathogen survival. Fungal immune evasion is tightly connected to chromatin regulation. Hence, fungal chromatin modifiers pose alternative treatment options to combat fungal infections.

View Article and Find Full Text PDF

Host and fungal pathogens compete for metal ion acquisition during infectious processes, but molecular mechanisms remain largely unknown. Here, we show that type I interferons (IFNs-I) dysregulate zinc homeostasis in macrophages, which employ metallothionein-mediated zinc intoxication of pathogens as fungicidal response. However, Candida glabrata can escape immune surveillance by sequestering zinc into vacuoles.

View Article and Find Full Text PDF

Identification of multiple histone acylations diversifies transcriptional control by metabolism, but their functions are incompletely defined. Here we report evidence of histone crotonylation in the human fungal pathogen Candida albicans. We define the enzymes that regulate crotonylation and show its dynamic control by environmental signals: carbon sources, the short-chain fatty acids butyrate and crotonate, and cell wall stress.

View Article and Find Full Text PDF

Type I interferons (IFNs-I) fulfil multiple protective functions during pathogenic infections, but they can also cause detrimental effects and enhance immunopathology. Here, we report that IFNs-I promote the dysregulation of iron homeostasis in macrophages during systemic infections with the intracellular pathogen Candida glabrata, leading to fungal survival and persistence. By engaging JAK1, IFNs-I disturb the balance of the transcriptional activator NRF2 and repressor BACH1 to induce downregulation of the key iron exporter Fpn1 in macrophages.

View Article and Find Full Text PDF

species represent one of the most frequent causes of hospital-acquired infections in immunocompromised patient cohorts. Due to a very limited set of antifungals available and an increasing prevalence of drug resistance, the discovery of novel antifungal targets is essential. Targeting chromatin modifiers as potential antifungal targets has gained attention recently, mainly due to their role in regulating virulence in species.

View Article and Find Full Text PDF

Fungal virulence is regulated by a tight interplay of transcriptional control and chromatin remodelling. Despite compelling evidence that lysine acetylation modulates virulence of pathogenic fungi such as Candida albicans, the underlying mechanisms have remained largely unexplored. We report here that Gcn5, a paradigm lysyl-acetyl transferase (KAT) modifying both histone and non-histone targets, controls fungal morphogenesis - a key virulence factor of C.

View Article and Find Full Text PDF

Due to a limited set of antifungals available and problems in early diagnosis, invasive fungal infections caused by Candida species are among the most common hospital-acquired infections with staggering mortality rates. Here, we describe an engineered system able to sense and respond to the fungal pathogen Candida albicans, the most common cause of candidemia. In doing so, we identified hydroxyphenylacetic acid (HPA) as a novel molecule secreted by C.

View Article and Find Full Text PDF

Morphological plasticity such as the yeast-to-hyphae transition is a key virulence factor of the human fungal pathogen Candida albicans. Hyphal formation is controlled by a multilayer regulatory network composed of environmental sensing, signaling, transcriptional modulators as well as chromatin modifications. Here, we demonstrate a novel role for the replication-independent HIR histone chaperone complex in fungal morphogenesis.

View Article and Find Full Text PDF

Unlabelled: Chromatin modifications affect gene regulation in response to environmental stimuli in numerous biological processes. For example, N-acetyl-glucosamine and CO induce a morphogenetic conversion between white (W) and opaque (O) cells in MTL (mating-type locus) homozygous and heterozygous ( A: /α) strains of the human fungal pathogen Candida albicans Here, we identify 8 histone-modifying enzymes playing distinct roles in the regulation of W/O switching in MTL homozygous and heterozygous strains. Most strikingly, genetic removal of the paralogous genes RPD3 and RPD31, both of which encode almost identical orthologues of the yeast histone deacetylase (HDAC) Rpd3, reveals opposing roles in W/O switching of MTL A: /α strains.

View Article and Find Full Text PDF

Immunodetection is described in this chapter as a technique for producing specific antibodies for antigen detection of the major human fungal pathogens. In the case of Candida spp., heat-killed cells are used to immunize mice over a couple of weeks and then splenocytes are isolated and further fused with myelomas to easily propagate the antibodies produced in the mice.

View Article and Find Full Text PDF

Human fungal pathogens like Candida albicans respond to host immune surveillance by rapidly adapting their transcriptional programs. Chromatin assembly factors are involved in the regulation of stress genes by modulating the histone density at these loci. Here, we report a novel role for the chromatin assembly-associated histone acetyltransferase complex NuB4 in regulating oxidative stress resistance, antifungal drug tolerance and virulence in C.

View Article and Find Full Text PDF

Here, we report a method for the transformation by electroporation of the human fungal pathogen (). The protocol can be used for transformations in single well or in 96-well microtiter plates. It has been extensively used to generate a genome-scale gene deletion library using the background recipient strain ATCC2001 (Schwarzmüller , 2014).

View Article and Find Full Text PDF

Here, we describe a method enabling the phenotypic profiling of genome-scale deletion collections of fungal mutants to detect phenotypes for various stress conditions. These stress conditions include among many others antifungal drug susceptibility, temperature-induced and osmotic as well as heavy metal or oxidative stress. The protocol was extensively used to phenotype a collection of gene deletion mutants in the human fungal pathogen () (Schwarzmüller , 2014).

View Article and Find Full Text PDF

Here, we report a method for the transformation of using a heat shock method. The protocol can be used for transformations in single well or in 96-well scale. It has been employed as an alternative method to the electroporation protocol to construct a genome-scale gene deletion collection in the human fungal pathogen ATCC2001 and related strains.

View Article and Find Full Text PDF

The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat.

View Article and Find Full Text PDF

Chromatin assembly and remodelling is an important process during the repair of DNA damage in eukaryotic cells. Although newly synthesized histone H4 is acetylated prior to nuclear import and incorporation into chromatin during DNA damage repair, the precise role of acetylation in this process is poorly understood. Here, we identify the histone acetyltransferase 1 (Hat1) catalysing the conserved acetylation pattern of histone H4 preceding its chromatin deposition in the fungal pathogen Candida albicans.

View Article and Find Full Text PDF

Candida albicans is a pleiomorphic fungal pathogen whose morphogenetic plasticity has long been considered as a major virulence factor. In addition to the yeast-filament transition, C. albicans cells also have the unique ability to switch between two epigenetic phases referred to as white and opaque.

View Article and Find Full Text PDF

Transcription of DNA transfer genes is a prerequisite for conjugative DNA transfer of F-like plasmids. Transfer gene expression is sensed by the donor cell and is regulated by a complex network of plasmid- and host-encoded factors. In this study we analyzed the effect of induction of the heat shock regulon on transfer gene expression and DNA transfer in Escherichia coli.

View Article and Find Full Text PDF