Publications by authors named "Nitesh Kumar Singh"

Metabolic disorders (MetDs), driven mostly by lifestyle changes are growing at an alarming rate, and have cardiovascular and cerebrovascular consequences, eventually leading to various neuropsychiatric disorders. Considering a dearth of studies, we modeled MetDs-like conditions in C57BL/6 Ncrl mice on prolonged 60% high fructose diet (Hfr) for 56 weeks. The metabolic assessments revealed significant changes in various MetDs-related physiological and biochemical parameters in the Hfr group compared to the control (Ctrl) group such as reduced lean mass, hyperlipidemia, elevated liver function markers (SGPT, SGOT), and kidney function markers (creatinine, alkaline phosphatase).

View Article and Find Full Text PDF

's () autarkic lifestyle within the host involves rewiring its transcriptional networks to combat host-induced stresses. With the help of RNA sequencing performed under various stress conditions, we identified that genes belonging to sulfur metabolism pathways are significantly upregulated during oxidative stress. Using an integrated approach of microbial genetics, transcriptomics, metabolomics, animal experiments, chemical inhibition, and rescue studies, we investigated the biological role of non-canonical L-cysteine synthases, CysM and CysK2.

View Article and Find Full Text PDF

(1) Background: Intervertebral disc degeneration has been linked to obesity; its potential mechanical effects on the intervertebral disc remain unknown. This study aimed to develop and validate a patient-specific model of L3-L4 vertebrae and then use the model to estimate the impact of increasing body weight on disc degeneration. (2) Methods: A three-dimensional model of the functional spinal unit of L3-L4 vertebrae and its components were developed and validated.

View Article and Find Full Text PDF

Nucleoid-associated proteins (NAPs) regulate multiple cellular processes such as gene expression, virulence, and dormancy throughout bacterial species. NAPs help in the survival and adaptation of Mycobacterium tuberculosis (Mtb) within the host. Fourteen NAPs have been identified in Escherichia coli; however, only seven NAPs are documented in Mtb.

View Article and Find Full Text PDF

Background: The major brunt of coronavirus disease-2019 (COVID-2019) is borne by the lungs. The major cause of morbidity and mortality in COVID-19 patients is a compromise of the respiratory system. Pneumothorax is noted as an insignificant proportion of patients suffering from COVID-19, but it jeopardizes the clinical recovery significantly.

View Article and Find Full Text PDF

SigA (σ) is an essential protein and the primary sigma factor in Mycobacterium tuberculosis (Mtb). However, due to the absence of genetic tools, our understanding of the role and regulation of σ activity and its molecular attributes that help modulate Mtb survival is scant. Here, we generated a conditional gene replacement of σ in Mtb and showed that its depletion results in a severe survival defect in vitro, ex vivo, and in vivo in a murine infection model.

View Article and Find Full Text PDF

The Delta variant of SARS-CoV-2 has caused more severe infections than its previous variants. We studied the host innate immune response to Delta, Alpha, and two earlier variants to map the evolution of the recent ones. Our biochemical and transcriptomic studies in human colon epithelial cell line Caco2 reveal that Alpha and Delta have progressively evolved over the ancestral variants by silencing the innate immune response, thereby limiting cytokine and chemokine production.

View Article and Find Full Text PDF
Article Synopsis
  • FTO is a protein that helps control RNA, and its lower amounts are found in some types of cancer, which may make the cancer worse.
  • When FTO is turned off, it helps cancer cells grow and spread more easily in tests and in living organisms like mice.
  • The study shows that when FTO is less active, it changes how some important genes work, making tumors grow faster and possibly providing a way to treat these cancers better by targeting FTO.
View Article and Find Full Text PDF

In cells, intrinsic endogenous direct current (DC) electric fields (EFs) serve as morphogenetic cues and are necessary for several important cellular responses including activation of multiple signaling pathways, cell migration, tissue regeneration and wound healing. Endogenous DC EFs, generated spontaneously following injury in physiological conditions, directly correlate with wound healing rate, and different cell types respond to these EFs via directional orientation and migration. Application of external DC EFs results in electrode polarity and is known to activate intracellular signaling events in specific direction.

View Article and Find Full Text PDF

Fungal virulence is regulated by a tight interplay of transcriptional control and chromatin remodelling. Despite compelling evidence that lysine acetylation modulates virulence of pathogenic fungi such as Candida albicans, the underlying mechanisms have remained largely unexplored. We report here that Gcn5, a paradigm lysyl-acetyl transferase (KAT) modifying both histone and non-histone targets, controls fungal morphogenesis - a key virulence factor of C.

View Article and Find Full Text PDF

Although numerous epigenetic aberrancies accumulate in melanoma, their contribution to initiation and progression remain unclear. The epigenetic mark 5-hydroxymethylcytosine (5hmC), generated through TET-mediated DNA modification, is now referred to as the sixth base of DNA and has recently been reported as a potential biomarker for multiple types of cancer. Loss of 5hmC is an epigenetic hallmark of melanoma, but whether a decrease in 5hmc levels contributes directly to pathogenesis or whether it merely results from disease progression-associated epigenetic remodeling remains to be established.

View Article and Find Full Text PDF

The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system.

View Article and Find Full Text PDF

Microarrays have been useful in understanding various biological processes by allowing the simultaneous study of the expression of thousands of genes. However, the analysis of microarray data is a challenging task. One of the key problems in microarray analysis is the classification of unknown expression profiles.

View Article and Find Full Text PDF

Identification of the key genes/proteins of pluripotency and their interrelationships is an important step in understanding the induction and maintenance of pluripotency. Experimental approaches have accumulated large amounts of interaction/regulation data in mouse. We investigate how far such information can be transferred to human, the species of maximum interest, for which experimental data are much more limited.

View Article and Find Full Text PDF

Transmembrane beta barrel (TMB) proteins are found in the outer membranes of bacteria, mitochondria and chloroplasts. TMBs are involved in a variety of functions such as mediating flux of metabolites and active transport of siderophores, enzymes and structural proteins, and in the translocation across or insertion into membranes. We present here TMBHMM, a computational method based on a hidden Markov model for predicting the structural topology of putative TMBs from sequence.

View Article and Find Full Text PDF

With the completion of the Human Genome Project in 2003, many new projects to sequence bacterial genomes were started and soon many complete bacterial genome sequences were available. The sequenced genomes of pathogenic bacteria provide useful information for understanding host-pathogen interactions. These data prove to be a new weapon in fighting against pathogenic bacteria by providing information about potential drug targets.

View Article and Find Full Text PDF