Publications by authors named "Mohammad Krayem"

Article Synopsis
  • MicroRNAs (miRNAs) play a significant role in regulating gene expression and have been linked to patient survival in acute myeloid leukemia (AML).
  • Recent findings suggest that cancer cells use exosomes (EXOs) to transfer miRNAs to immune cells, affecting their function.
  • The study focused on miR-24-3p found in EXOs from AML cells, which increases T-cell apoptosis and alters various signaling pathways, pointing to a mechanism by which AML impairs T-cell activity and highlighting potential targets for improving T-cell responses against leukemia.
View Article and Find Full Text PDF

Despite important advances in the treatment of metastatic melanoma with the development of MAPK-targeted agents and immune checkpoint inhibitors, the majority of patients either do not respond to therapies or develop acquired resistance. Furthermore, there is no effective targeted therapy currently available for BRAF wild-type melanomas (approximately 50% of cutaneous melanoma). Thus, there is a compelling need for new efficient targeted therapies.

View Article and Find Full Text PDF

Melanoma is known to be a radioresistant cancer. Melanoma radioresistance can be due to several factors such as pigmentation, antioxidant defenses and high Deoxyribonucleic acid (DNA) repair efficacy. However, irradiation induces intracellular translocation of RTKs, including cMet, which regulates response to DNA damage activating proteins and promotes DNA repair.

View Article and Find Full Text PDF

Radiotherapy is part of the standard of care treatment for a great majority of cancer patients. As a result of radiation, both tumor cells and the environment around them are affected directly by radiation, which mainly primes but also might limit the immune response. Multiple immune factors play a role in cancer progression and response to radiotherapy, including the immune tumor microenvironment and systemic immunity referred to as the immune landscape.

View Article and Find Full Text PDF

Potential intrinsic resistance mechanisms to regorafenib were explored after short exposure (3 days) on five CRC cell lines (HCT-116, SW1116, LS-1034, SW480, Caco-2). The observation of senescence-like features led to the investigation of a drug-initiated phenotype switch. Following long-term exposure (12 months) of HCT-116 and SW480 cell lines to regorafenib, we developed resistant models to explore acquired resistance.

View Article and Find Full Text PDF

Over the last years, the oligometastatic disease state has gained more and more interest, and randomized trials are now suggesting an added value of stereotactic radiotherapy on all macroscopic disease in oligometastatic patients; but what barriers could impede widespread disease in some patients? In this review, we first discuss the concept of oligometastatic disease and some examples of clinical evidence. We then explore the route to dissemination: the hurdles a tumoral clone has to overtake before it can produce efficient and widespread dissemination. The spectrum theory argues that the range of metastatic patterns encountered in the clinic is the consequence of gradually obtained metastatic abilities of the tumor cells.

View Article and Find Full Text PDF

Melanoma cells are notorious for their high plasticity and ability to switch back and forth between various melanoma cell states, enabling the adaptation to sub-optimal conditions and therapeutics. This phenotypic plasticity, which has gained more attention in cancer research, is proposed as a new paradigm for melanoma progression. In this review, we provide a detailed and deep comprehensive recapitulation of the complex spectrum of phenotype switching in melanoma, the key regulator factors, the various and new melanoma states, and corresponding signatures.

View Article and Find Full Text PDF

The oxygen sensor prolyl hydroxylase domain 2 (PHD2) plays an important role in cell hypoxia adaptation by regulating the stability of HIF proteins (HIF1α and HIF2α) in numerous cell types, including T lymphocytes. The role of oxygen sensor on immune cells, particularly on regulatory T cell (Treg) function, has not been fully elucidated. The purpose of our study was to evaluate the role of PHD2 in the regulation of Treg phenotype and function.

View Article and Find Full Text PDF
Article Synopsis
  • FTO is a protein that helps control RNA, and its lower amounts are found in some types of cancer, which may make the cancer worse.
  • When FTO is turned off, it helps cancer cells grow and spread more easily in tests and in living organisms like mice.
  • The study shows that when FTO is less active, it changes how some important genes work, making tumors grow faster and possibly providing a way to treat these cancers better by targeting FTO.
View Article and Find Full Text PDF

TP53 mutation is one of the most frequent genetic alterations in head and neck squamous cell carcinoma (HNSCC) and results in an accumulation of p53 protein in tumor cells. This makes p53 an attractive target to improve HNSCC therapy by restoring the tumor suppressor activity of this protein. Therapeutic strategies targeting p53 in HNSCC can be divided into three categories related to three subtypes encompassing WT p53, mutated p53 and HPV-positive HNSCC.

View Article and Find Full Text PDF

Purpose Of Review: Radiotherapy has been proven to be useful but insufficient in melanoma management due to the intrinsic radioresistance of melanoma cells. Elucidation of the molecular mechanisms and pathways related to resistance/sensitivity to radiotherapy in melanoma is of paramount importance. In this review, we will summarize and discuss the recent 'discoveries' and advances in radiosensitivity determinants in melanoma.

View Article and Find Full Text PDF

Immunotherapy with checkpoint inhibitors opened new horizons in cancer treatment. Clinical trials for novel immunotherapies or unexplored combination regimens either need years of development or are simply impossible to perform like is the case in cancer patients with limited life expectancy. Thus, the need for preclinical models that rapidly and safely allow for a better understanding of underlying mechanisms, drug kinetics and toxicity leading to the selection of the best regimen to be translated into the clinic, is of high importance.

View Article and Find Full Text PDF

The use of patient-derived primary cell cultures in cancer preclinical assays, including drug screens and genotoxic studies, has increased in recent years. However, their translational value is constrained by several limitations, including variability that can be caused by the culture conditions. Here, we show that the medium composition commonly used to propagate primary melanoma cultures has limited their representability of their tumor of origin and their cellular plasticity, and modified their sensitivity to therapy.

View Article and Find Full Text PDF

Purpose Of Review: Drug development is the process of bringing new anticancer agents into clinical practice. From the basic research to clinical research each step is essential and intimately linked. The aim of this review is to describe emerging preclinical models and to provide an overview of selected drugs recently developed in oncology.

View Article and Find Full Text PDF

MAPK (mitogen activated protein kinase) and PI3K/AKT (Phosphatidylinositol-3-Kinase and Protein Kinase B) pathways play a key role in melanoma progression and metastasis that are regulated by receptor tyrosine kinases (RTKs). Although RTKs are mutated in a small percentage of melanomas, several receptors were found up regulated/altered in various stages of melanoma initiation, progression, or metastasis. Targeting RTKs remains a significant challenge in melanoma, due to their variable expression across different melanoma stages of progression and among melanoma subtypes that consequently affect response to treatment and disease progression.

View Article and Find Full Text PDF

Amplification or activating mutations of c-Kit are a frequent oncogenic alteration, which occurs commonly in acral and mucosal melanoma. Among c-Kit inhibitors, dasatinib is the most active due to its ability to bind both active and inactive conformations of the receptor. However, its use as a single agent in melanoma showed limited clinical benefit.

View Article and Find Full Text PDF

Melanoma is the most common cancer in young adults, with a constantly increasing incidence. Metastatic melanoma is a very aggressive cancer with a 5-year survival rate of about 22-25%. This is, in most cases, due to a lack of therapies which are effective on the long term.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in treating metastatic melanoma include the development of small molecule inhibitors that target mutated proteins like BRAF, NRAS, and cKIT, but many patients still develop resistance to these treatments.
  • Research on melanoma cell lines with these mutations revealed that, after initial drug exposure, metabolism is disrupted but can recover, indicating possible development of resistance.
  • Combining findings from metabolic and protein studies identified key metabolic pathways and proteins that could serve as new targets to overcome drug resistance in melanoma treatment.*
View Article and Find Full Text PDF

Radiotherapy (RT) in patients with melanoma historically showed suboptimal results, because the disease is often radioresistant due to various mechanisms such as scavenging free radicals by thiols, pigmentary machinery, or enhanced DNA repair. However, radiotherapy has been utilized as adjuvant therapy after the complete excision of primary melanoma and lymph nodes to reduce the rate of nodal recurrences in high-risk patients. The resistance of melanoma cells to radiotherapy may also be in relation with the constitutive activation of the MAPK pathway and/or with the inactivation of p53 observed in about 90% of melanomas.

View Article and Find Full Text PDF

Background: Age-related genetic changes in lymphocyte subsets are not currently well documented. BACH2 is a transcription factor that plays an important role in immune-mediated homeostasis by tightly regulating PRDM1 expression in both B-cells and T-cells. BACH2 gene expression is highly sensitive to DNA damage in aged mice.

View Article and Find Full Text PDF