Publications by authors named "Matthieu Chollet"

The energetics and dynamics of ion assembly in solution has broad influence in nanomaterials and inorganic synthesis. To investigate the fundamental processes involved, we present a time-resolved x-ray solution scattering (TR-XSS) study of the trinuclear silver and thallium complexes of the diplatinum ion PtPOP [Pt(HPO) ] in aqueous solution. These complexes, their structural properties, and their electronic structure are not well understood and afford a unique opportunity to study the metal-metal bond formation that influences molecular and material assembly in solution.

View Article and Find Full Text PDF

In this work, we describe the instrumentation used to perform the first operando transmission X-ray microscopy (TXM) and simultaneous X-ray diffraction of laser melting simulating laser powder bed fusion on the XCS instrument at the Linac Coherent Light Source (LCLS) X-ray free-electron laser (XFEL). Our TXM with 40× magnification in the X-ray regime at 11 keV gave spatial resolutions down to 940 nm per line pair, with effective pixel sizes down to 206 nm, image integration times of <100 fs, and frame rates tunable between 2.1 and 119 ns for two probe frames (0.

View Article and Find Full Text PDF

Highly covalent Ni bis(dithiolene) and related complexes provide an ideal platform for investigating the effects of metal-ligand orbital hybridization on excited state character and dynamics. In particular, we focus on the ligand field excited states that dominate the photophysics of first-row transition metal complexes. We investigate if they can be significantly delocalized off the metal center, possibly yielding photochemical reactivity more similar to charge transfer excited states than metal-centered ligand field excited states.

View Article and Find Full Text PDF

A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.

View Article and Find Full Text PDF

Supercritical fluids exhibit distinct thermodynamic and transport properties, making them of particular interest for a wide range of scientific and engineering applications. These anomalous properties emerge from structural heterogeneities due to the formation of molecular clusters at conditions above the critical point. While the static behavior of these clusters and their effects on the thermodynamic response functions have been recognized, the relation between the ultrafast cluster dynamics and transport properties remains elusive.

View Article and Find Full Text PDF

Many rubidium manganese hexacyanoferrate materials, with the general formula Rb Mn[Fe(CN)]·HO, exhibit diverse charge-transfer-based functionalities due to the bistability between a high temperature Mn( = 5/2)Fe( = 1/2) cubic phase and a low-temperature Mn( = 2)Fe( = 0) tetragonal phase. The collective Jahn-Teller distortion on the Mn sites is responsible for the cubic-to-tetragonal ferroelastic phase transition, which is associated with the appearance of ferroelastic domains. In this study, we use X-ray diffraction to reveal the coexistence of 3 types of ferroelastic tetragonal domains and estimate the spatial extension of the strain around the domain walls, which represents about 30% of the volume of the crystal.

View Article and Find Full Text PDF
Article Synopsis
  • The kagome superconductor CsVSb features multiple charge density wave (CDW) phases that are important for understanding exotic electronic behaviors, but their exact structures are difficult to determine.
  • Through time-resolved X-ray diffraction, researchers have identified the competition between two coexisting 2 × 2 × 2 CDW phases in CsVSb and observed distinct melting behaviors when stimulated by light.
  • Their findings highlight the complex interactions between these CDW phases and provide a new non-equilibrium approach for studying intricate phase relationships that are hard to resolve with traditional static methods.
View Article and Find Full Text PDF

To fully harness the potential of abundant metal coordination complex photosensitizers, a detailed understanding of the molecular properties that dictate and control the electronic excited-state population dynamics initiated by light absorption is critical. In the absence of detectable luminescence, optical transient absorption (TA) spectroscopy is the most widely employed method for interpreting electron redistribution in such excited states, particularly for those with a charge-transfer character. The assignment of excited-state TA spectral features often relies on spectroelectrochemical measurements, where the transient absorption spectrum generated by a metal-to-ligand charge-transfer (MLCT) electronic excited state, for instance, can be approximated using steady-state spectra generated by electrochemical ligand reduction and metal oxidation and accounting for the loss of absorptions by the electronic ground state.

View Article and Find Full Text PDF

The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES).

View Article and Find Full Text PDF

Dimeric complexes composed of d square planar metal centers and rigid bridging ligands provide model systems to understand the interplay between attractive dispersion forces and steric strain in order to assist the development of reliable methods to model metal dimer complexes more broadly. [Ir (dimen)] (dimen = -diisocyanomenthane) presents a unique case study for such phenomena, as distortions of the optimal structure of a ligand with limited conformational flexibility counteract the attractive dispersive forces from the metal and ligand to yield a complex with two ground state deformational isomers. Here, we use ultrafast X-ray solution scattering (XSS) and optical transient absorption spectroscopy (OTAS) to reveal the nature of the equilibrium distribution and the exchange rate between the deformational isomers.

View Article and Find Full Text PDF

Chemical transformations in charge transfer states result from the interplay between electronic dynamics and nuclear reorganization along excited-state trajectories. Here, we investigate the ultrafast structural dynamics following photoinduced electron transfer from the metal-metal-to-ligand charge transfer state of an electron donor, a Pt dimer complex, to a covalently linked electron acceptor group using ultrafast time-resolved wide-angle X-ray scattering and optical transient absorption spectroscopy methods to disentangle the interdependence of the excited-state electronic and nuclear dynamics. Following photoexcitation, Pt-Pt bond formation and contraction takes up to 1 ps, much slower than the corresponding process in analogous complexes without electron acceptor groups.

View Article and Find Full Text PDF

Polarized time-resolved X-ray absorption spectroscopy at the Co K-edge is used to probe the excited-state dynamics and photolysis of base-off methylcobalamin and the excited-state structure of base-off adenosylcobalamin. For both molecules, the final excited-state minimum shows evidence for an expansion of the cavity around the Co ion by ca. 0.

View Article and Find Full Text PDF

Lattice dynamics measurements are often crucial tools for understanding how materials transform between different structures. We report time-resolved x-ray scattering-based measurements of the nonequilibrium lattice dynamics in SnSe, a monochalcogenide reported to host a novel photoinduced lattice instability. By fitting interatomic force models to the fluence dependent excited-state dispersion, we determine the nonthermal origin of the lattice instability to be dominated by changes of interatomic interactions along a bilayer-connecting bond, rather than of an intralayer bonding network that is of primary importance to the lattice instability in thermal equilibrium.

View Article and Find Full Text PDF

X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method for studying electronic and structural properties of matter. At first glance, the relatively narrow bandwidth and the highly fluctuating spectral structure of X-ray Free Electron Lasers (XFEL) sources seem to require accumulation over many shots to achieve high data quality. To date the best approach to implementing XAS at XFEL facilities has been using monochromators to scan the photon energy across the desired spectral range.

View Article and Find Full Text PDF

The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior.

View Article and Find Full Text PDF

New, hard x-ray free electron lasers (FEL) produce intense femtosecond-to-attosecond pulses at angstrom wavelengths, giving access to the fundamental spatial and temporal scales of matter. These revolutionary light sources open the door to applying the suite of nonlinear, optical spectroscopy methods at hard x-ray photon energies. Nonlinear spectroscopy with hard x-rays can allow for measuring the coherence properties of short wavelength excitations with atomic specificity and for understanding how high energy excitations couple to other degrees of freedom in atomic, molecular or condensed-phase systems.

View Article and Find Full Text PDF

We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe_{4})_{2}I following ultrafast infrared photoexcitation. From the time-dependent diffraction signal at the CDW sidebands we identify a 0.11 THz amplitude mode derived primarily from a transverse acoustic mode of the high-symmetry structure.

View Article and Find Full Text PDF

Femtosecond time-resolved X-ray absorption (XANES) at the Co K-edge, X-ray emission (XES) in the Co Kβ and valence-to-core regions, and broadband UV-vis transient absorption are combined to probe the femtosecond to picosecond sequential atomic and electronic dynamics following photoexcitation of two vitamin B compounds, hydroxocobalamin and aquocobalamin. Polarized XANES difference spectra allow identification of sequential structural evolution involving first the equatorial and then the axial ligands, with the latter showing rapid coherent bond elongation to the outer turning point of the excited state potential followed by recoil to a relaxed excited state structure. Time-resolved XES, especially in the valence-to-core region, along with polarized optical transient absorption suggests that the recoil results in the formation of a metal-centered excited state with a lifetime of 2-5 ps.

View Article and Find Full Text PDF

Photoexcited molecular trajectories on potential energy surfaces (PESs) prior to thermalization are intimately connected to the photochemical reaction outcome. The excited-state trajectories of a diplatinum complex featuring photo-activated metal-metal σ-bond formation and associated Pt-Pt stretching motions were detected in real time using femtosecond wide-angle X-ray solution scattering. The observed motions correspond well with coherent vibrational wavepacket motions detected by femtosecond optical transient absorption.

View Article and Find Full Text PDF

Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)FeCNRu(NH)], in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.

View Article and Find Full Text PDF

We report observations of nanosecond nonuniform colloidal dynamics in a free flowing liquid jet using ultrafast x-ray speckle visibility spectroscopy. Utilizing a nanosecond double-bunch mode, the Linac Coherent Light Source free electron laser produced pairs of femtosecond coherent hard x-ray pulses. By exploring anisotropy in the visibility of summed speckle patterns which relates to the correlation functions, we evaluate not only the average particle flow rate in a colloidal nanoparticle jet, but also the nonuniform flow field within.

View Article and Find Full Text PDF

The collective dynamics of topological structures are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices, and these are promising for ultrafast electric-field control of topological orders.

View Article and Find Full Text PDF

The dynamics of photodissociation and recombination in heme proteins represent an archetypical photochemical reaction widely used to understand the interplay between chemical dynamics and reaction environment. We report a study of the photodissociation mechanism for the Fe(II)-S bond between the heme iron and methionine sulfur of ferrous cytochrome c. This bond dissociation is an essential step in the conversion of cytochrome c from an electron transfer protein to a peroxidase enzyme.

View Article and Find Full Text PDF

It is well known that the solvent plays a critical role in ultrafast electron-transfer reactions. However, solvent reorganization occurs on multiple length scales, and selectively measuring short-range solute-solvent interactions at the atomic level with femtosecond time resolution remains a challenge. Here we report femtosecond X-ray scattering and emission measurements following photoinduced charge-transfer excitation in a mixed-valence bimetallic (FeRu) complex in water, and their interpretation using non-equilibrium molecular dynamics simulations.

View Article and Find Full Text PDF