98%
921
2 minutes
20
A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies. Here, we apply ultrafast single-shot X-ray photon correlation spectroscopy to resolve the nonequilibrium, heterogeneous, and irreversible mesoscale dynamics during a light-induced phase transition in a (PbTiO)/(SrTiO) superlattice. Such ferroelectric superlattice systems are a useful platform to study phase transitions and topological dynamics due to their high degree of tunability. This provides an approach for capturing the nucleation of the light-induced phase, the formation of transient mesoscale defects at the boundaries of the nuclei, and the eventual annihilation of these defects, even in systems with complex polarization topologies. We identify a nonequilibrium correlation response spanning >10 orders of magnitude in timescales, with multistep behavior similar to the plateaus observed in supercooled liquids and glasses. We further show how the observed time-dependent long-time correlations can be understood in terms of stochastic and non-Markovian dynamics of domain walls, encoded in waiting-time distributions with power-law tails. This work defines possibilities for probing the nonequilibrium and correlated dynamics of disordered and heterogeneous media.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745343 | PMC |
http://dx.doi.org/10.1073/pnas.2407772122 | DOI Listing |
eNeuro
September 2025
Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210.
Cancer patients experience circadian rhythm disruptions during and after chemotherapy that can contribute to debilitating side effects. It is unknown how chemotherapy mediates circadian disruptions, and specifically the extent to which these disruptions occur at the level of the principal clock, the suprachiasmatic nuclei (SCN) of the hypothalamus. In the present study, we assessed how the commonly used chemotherapeutic, paclitaxel, impacts the SCN molecular clock and SCN-dependent behavioral adaptations to circadian challenges in female mice.
View Article and Find Full Text PDFNat Commun
September 2025
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, Germany.
Light-induced magnetisation switching is one of the most intriguing and promising areas where an ultrafast phenomenon can be utilised in technological applications. So far, experiment and theory have considered the origin of all-optical helicity-independent magnetisation switching (AO-HIS) in individual magnetic films only as a microscopically local, thermally-driven process of angular momentum transfer between different subsystems. Here, we demonstrate that this local picture is insufficient and that AO-HIS must also be regarded as a spatially inhomogeneous process along the depth within a few-nanometre thin magnetic layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road
Light-controlled organic atom transfer radical polymerization (O-ATRP) has emerged as a mature and advanced method for synthesizing well-defined macromolecules. However, developing a high-performance, low-loading, and oxygen-tolerant O-ATRP catalyst system remains an urgent challenge. Herein, we developed a new O-ATRP catalyst based on 2,5-bis(4-pyridinium) thiazolo[5,4-]thiazole.
View Article and Find Full Text PDFJ Biophotonics
September 2025
Institute for Physical Research of National Academy of Sciences of Armenia, Ashtarak, Armenia.
We report the results of an experimental study of the movement and trapping of Gram-negative Escherichia coli (E. coli) bacteria in broth suspensions, under photovoltaic fields generated by an optical Bessel beam illumination of the surface of a lithium niobate crystal (photovoltaic tweezers). The study was performed using a phase-sensitive transmission microscope.
View Article and Find Full Text PDFNeurobiol Sleep Circadian Rhythms
November 2025
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
The suprachiasmatic nucleus (SCN) of the hypothalamus is a principal light-responsive circadian clock that adjusts circadian rhythms in mammalian physiology and behavior to changes in external light signals. Although mechanisms underlying how light acutely resets the timing of circadian rhythms have been characterized, it remains elusive how light signals induce lasting changes in circadian period, known as period after-effects. Here we have found that the period after-effects on circadian behavior of changing photoperiods are blocked by application of the DNA methyltransferase inhibitor RG108 near the SCN.
View Article and Find Full Text PDF