Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe_{4})_{2}I following ultrafast infrared photoexcitation. From the time-dependent diffraction signal at the CDW sidebands we identify a 0.11 THz amplitude mode derived primarily from a transverse acoustic mode of the high-symmetry structure. From our measurements we determine that this mode interacts with the valence charge indirectly through another collective mode, and that the CDW system in (TaSe_{4})_{2}I has a composite nature supporting multiple dynamically active structural degrees of freedom.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.076901DOI Listing

Publication Analysis

Top Keywords

ultrafast x-ray
8
x-ray scattering
8
collective mode
8
charge density
8
density wave
8
material tase_{4}_{2}i
8
mode
5
scattering reveals
4
reveals composite
4
composite amplitude
4

Similar Publications

Phycobilisome (PBS) is a water-soluble light-harvesting supercomplex found in cyanobacteria, glaucophytes, and rhodophytes. PBS interacts with photosynthetic reaction centers, specifically photosystems II and I (PSII and PSI), embedded in the thylakoid membrane. It is widely accepted that PBS predominantly associates with PSII, which functions as the initial complex in the linear electron transport chain.

View Article and Find Full Text PDF

Transient mixed-valent Ni active sites boost urea electrooxidation.

J Colloid Interface Sci

September 2025

Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:

The utilization of synergistic multivalent active sites holds potential in addressing the inherent sluggish kinetics of electrocatalytic reactions. Herein, we prepared au uNPs/Ni-NDC (NDC = 1,4-Naphthalenedicarboxylic acid) and leveraged the localized surface plasmon resonance (LSPR) effect to drive hot electron transfer from au nanoparticles to the Ni substrate, thereby generating multivalent active sites to boost the urea oxidation reaction (UOR). Under exciting light, au uNPs/Ni-NDC exhibited a twofold increase in UOR current accompanied by a significant negative shift in onset potential.

View Article and Find Full Text PDF

Role of Liquid Composition in the Transient Liquid Assisted Growth of Superconducting YBaCuO Films.

Adv Mater

September 2025

Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra, Catalonia, 08193, Spain.

The unparalleled loss-less electrical current conduction of high-temperature superconducting (HTS) materials encourages research on YBaCuO (YBCO) to unravel opportunities toward numerous applications. Nonetheless, production costs and throughput of the commercialized HTS Coated Conductors (CCs) are still limiting a worldwide spread. Transient liquid assisted growth (TLAG) is a non-equilibrium process displaying ultrafast growth rate which, when combined with chemical solution deposition (CSD), is emerging as a strong candidate to reduce the cost/performance ratio of YBCO superconductors.

View Article and Find Full Text PDF

Vacuum-compatible sub-micrometer liquid flat-jet apparatus for soft x-ray spectroscopy.

Rev Sci Instrum

September 2025

Attosecond Science Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

We have developed a vacuum-compatible liquid flat-jet apparatus that delivers stable, sub-micrometer sheets for soft-x-ray spectroscopy. Interchangeable PEEKsil microjets (ϕ 25-100 μm) collide to form a leaf-like jet that runs reproducibly for more than 6 h at ∼0.1 Pa.

View Article and Find Full Text PDF

Vibrationally resolved resonant Auger spectroscopy (RAS) on bound-continuum transitions enables highly sensitive probing of ultrafast dissociation in molecular core-excited states, where a distinct fragment band arises from Auger decay in dissociation fragments. Here, we theoretically investigate fragment band formation driven by ultrashort X-ray pulses. Unlike conventional molecular bands, fragment RAS peaks exhibit an insensitivity to strong X-ray Rabi oscillations.

View Article and Find Full Text PDF