98%
921
2 minutes
20
Highly covalent Ni bis(dithiolene) and related complexes provide an ideal platform for investigating the effects of metal-ligand orbital hybridization on excited state character and dynamics. In particular, we focus on the ligand field excited states that dominate the photophysics of first-row transition metal complexes. We investigate if they can be significantly delocalized off the metal center, possibly yielding photochemical reactivity more similar to charge transfer excited states than metal-centered ligand field excited states. Here, [Ni(mpo)] (mpo = 2-mercaptopyridine--oxide) provides a representative example for the larger chemical class and is an active electro- and photocatalyst for proton reduction. A detailed characterization of the excited state electronic structure, dynamics, and photochemistry of [Ni(mpo)] is presented based on ultrafast transient X-ray absorption spectroscopy at the Ni and S 1s core absorption K-edges. By comparing the ultrafast Ni K-edge absorption to ab initio calculations, we identify an excited state relaxation mechanism where an initial ligand-to-metal charge transfer excitation results in both excited state electron transfer (generating a catalytically relevant reduced photoproduct [Ni(mpo)]) and relaxation to a pseudotetrahedral triplet ligand field excited state. From the ultrafast S K-edge absorption, the ligand field excited state is found to be highly delocalized onto the thiolate ligands, and a tetrahedral structural distortion is shown to substantially influence the degree of delocalization. The results identify a significant structural coordinate to target when aiming to control the excited state covalency in square planar complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c16212 | DOI Listing |
Org Lett
September 2025
Department of Chemistry, Indian Institute of Techology Bombay, Powai, Mumbai 400076, India.
The direct α-α coupling of 3-pyrrolyl boron dipyrromethenes (BODIPYs) affords helical near-infrared (NIR)-active dimers in one step via a radical Pd-catalyzed process. X-ray analysis reveals Z-type helical packing stabilized by π-π stacking and hydrogen-bonding interactions. These dimers showed pronounced bathochromic absorption shifts compared to monomers and solvent-dependent charge-transfer bands up to 905 nm with fluorescence quenching.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Universidad de Córdoba, Grupo de Química Computacional, Facultad de Ciencias Básicas, Carrera 6, No. 77-305, Montería-Córdoba, Colombia.
This study explores the photochemical conversion of BN-Dewar benzene into BN-benzvalene derivatives, offering a strategic route to heteroatom-containing valence isomers with distinctive electronic properties. Using time-dependent density functional theory (TD-DFT) and electron localization function (ELF) analyses, the excited-state mechanism and associated structural rearrangements were elucidated. Vertical excitation to the S state was found to weaken the CC and B-N bonds while strengthening the N-Si bond in silyl-substituted derivatives, a key factor enabling efficient BN-benzvalene formation.
View Article and Find Full Text PDFNature
September 2025
TUM School of Natural Sciences, Physics Department, Technical University of Munich, Garching, Germany.
Out-of-equilibrium phases in many-body systems constitute a new paradigm in quantum matter-they exhibit dynamical properties that may otherwise be forbidden by equilibrium thermodynamics. Among these non-equilibrium phases are periodically driven (Floquet) systems, which are generically difficult to simulate classically because of their high entanglement. Here we realize a Floquet topologically ordered state theoretically proposed in ref.
View Article and Find Full Text PDFNature
September 2025
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.
Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.
View Article and Find Full Text PDF