Biochim Biophys Acta Gen Subj
August 2025
The discovery of horseradish peroxidase (HRP) has been highly advantageous because its unique chemistry can be applied to diagnostic tools, including the detection of oxidative distress markers like hydrogen peroxide (HO) in various experimental systems. Here, we made the surprising and compelling finding that the flavonoids, phloretin and quercetin, which are usually described in the literature as potent antioxidants, strongly inhibit the activity of HRP. Using the amplex ultrared (AUR) assay, we discovered that phloretin at a concentration as low as 50 μM abolishes the detection of HO production by isolated liver mitochondria oxidizing pyruvate and malate.
View Article and Find Full Text PDFStromal interaction molecule 1 (STIM1) is a Ca sensor in the endoplasmic reticulum (ER) membrane. The protein plays a crucial role in store-operated Ca entry (SOCE) by transducing ER Ca depletion signals to Ca release-activated Ca channel protein 1 (ORAI1) at the plasma membrane. Myotubularin related protein 7 (MTMR7) is a lipid phosphatase that dephosphorylates phosphoinositides.
View Article and Find Full Text PDFHere, we demonstrate mitochondrial hydrogen peroxide (mtHO) production by α-ketoglutarate dehydrogenase (KGDH) can be inhibited by mitochondria-targeted S-nitrosating agent (MitoSNO), alleviating lipotoxicity. MitoSNO in the nanomolar range inhibits mtHO by ∼50% in isolated liver mitochondria without disrupting respiration, whereas the mitochondria-selective derivative used to synthesize MitoSNO, mitochondria-selective N-acetyl-penicillamine, had no effect on either mtHO generation or oxidative phosphorylation. Additionally, mtHO generation in isolated liver mitochondria was almost abolished when MitoSNO was administered in the low micromolar range.
View Article and Find Full Text PDFCell Mol Life Sci
October 2024
Signal peptide peptidase-like 2c (SPPL2c) is a testis-specific aspartyl intramembrane protease that contributes to male gamete function both by catalytic and non-proteolytic mechanisms. Here, we provide an unbiased characterisation of the in vivo interactome of SPPL2c identifying the ER chaperone calnexin as novel binding partner of this enzyme. Recruitment of calnexin specifically required the N-glycosylation within the N-terminal protease-associated domain of SPPL2c.
View Article and Find Full Text PDFThe infiltration of immune cells into the central nervous system mediates the development of autoimmune neuroinflammatory diseases. We previously showed that the loss of either Fabp5 or calnexin causes resistance to the induction of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model of multiple sclerosis (MS). Here we show that brain endothelial cells lacking either Fabp5 or calnexin have an increased abundance of cell surface CD200 and soluble CD200 (sCD200) as well as decreased T-cell adhesion.
View Article and Find Full Text PDFThe prevalence of non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers, with the Wnt/β-catenin signaling pathway exhibiting robust activation in this particular subtype. The expression of FAM83A (family with sequence similarity 83, member A) has been found to be significantly upregulated in lung cancer, leading to the stabilization of β-catenin and activation of the Wnt signaling pathway. In this study, we conducted a screening of down-regulated miRNAs in lung cancer with FAM83A as the target.
View Article and Find Full Text PDFCell Death Discov
July 2024
tRNA is the RNA type that undergoes the most modifications among known RNA, and in recent years, tRNA methylation has emerged as a crucial process in regulating gene translation. Dysregulation of tRNA abundance occurs in cancer cells, along with increased expression and activity of tRNA methyltransferases to raise the level of tRNA modification and stability. This leads to hijacking of translation and synthesis of multiple proteins associated with tumor proliferation, metastasis, invasion, autophagy, chemotherapy resistance, and metabolic reprogramming.
View Article and Find Full Text PDFThe myotubularin family, encompassing myotubularin 1 (MTM1) and 14 myotubularin-related proteins (MTMRs), represents a conserved group of phosphatases featuring a protein tyrosine phosphatase domain. Nine members are characterized by an active phosphatase domain C(X)R, dephosphorylating the D3 position of PtdIns(3)P and PtdIns(3,5)P2. Mutations in myotubularin genes result in human myopathies, and several neuropathies including X-linked myotubular myopathy and Charcot-Marie-Tooth type 4B.
View Article and Find Full Text PDFTransient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels.
View Article and Find Full Text PDFBiomed Pharmacother
April 2024
An increasing number of studies have shown that FAM83A, a member of the family with sequence similarity 83 (FAM83), which consists of eight members, is a key tumor therapeutic target involved in multiple signaling pathways. It has been reported that FAM83A plays essential roles in the regulation of Wnt/β-catenin, EGFR, MAPK, EMT, and other signaling pathways and physiological processes in models of pancreatic cancer, lung cancer, breast cancer, and other malignant tumors. Moreover, the expression of FAM83A could be significantly affected by multiple noncoding RNAs that are dysregulated in malignant tumors, the dysregulation of which is essential for the malignant process.
View Article and Find Full Text PDFIncreasing temperature influences the habitats of various organisms, including microscopic invertebrates. To gain insight into temperature-dependent changes in tardigrades, we isolated storage cells exposed to various temperatures and conducted biochemical and ultrastructural analysis in active and tun-state Paramacrobiotus experimentalis Kaczmarek, Mioduchowska, Poprawa, & Roszkowska, 2020. The abundance of heat shock proteins (HSPs) and ultrastructure of the storage cells were examined at different temperatures (20 °C, 30 °C, 35 °C, 37 °C, 40 °C, and 42 °C) in storage cells isolated from active specimens of Pam.
View Article and Find Full Text PDFThe incidence of Hepatocellular carcinoma (HCC) and HCC-related deaths have remarkably increased over the recent decades. It has been reported that β-catenin activation can be frequently observed in HCC cases. This study identified the integrin-linked kinase-associated phosphatase (ILKAP) as a novel β-catenin-interacting protein.
View Article and Find Full Text PDFCardiovascular complications are major clinical hallmarks of acute and post-acute coronavirus disease 2019 (COVID-19). However, the mechanistic details of SARS-CoV-2 infectivity of endothelial cells remain largely unknown. Here, we demonstrate that the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein shares a similarity with the proline-rich binding ena/VASP homology (EVH1) domain and identified the endoplasmic reticulum (ER) resident calreticulin (CALR) as an S-RBD interacting protein.
View Article and Find Full Text PDFCell Death Differ
October 2023
Autophagy serves as a pro-survival mechanism for a cell or a whole organism to cope with nutrient stress. Our understanding of the molecular regulation of this fusion event remains incomplete. Here, we identified RUNDC1 as a novel ATG14-interacting protein, which is highly conserved across vertebrates, including zebrafish and humans.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
October 2023
Macroautophagy is a health-modifying process of engulfing misfolded or aggregated proteins or damaged organelles, coating these proteins or organelles into vesicles, fusion of vesicles with lysosomes to form autophagic lysosomes, and degradation of the encapsulated contents. It is also a self-rescue strategy in response to harsh environments and plays an essential role in cancer cells. AMP-activated protein kinase (AMPK) is the central pathway that regulates autophagy initiation and autophagosome formation by phosphorylating targets such as mTORC1 and unc-51 like activating kinase 1 (ULK1).
View Article and Find Full Text PDFEndoplasmic reticulum (ER) luminal Ca is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca supply under different physiological conditions, in managing access to Ca and how Ca is used depending on the environmental events and in making sure that Ca is not misused.
View Article and Find Full Text PDFThe Wnt/β-catenin signaling is usually abnormally activated in hepatocellular carcinoma (HCC), and pituitary tumor-transforming gene 1 (PTTG1) has been found to be highly expressed in HCC. However, the specific mechanism of PTTG1 pathogenesis remains poorly understood. Here, we found that PTTG1 is a bona fide β-catenin binding protein.
View Article and Find Full Text PDFCellular homeostasis is crucial for the healthy functioning of the organism. Disruption of cellular homeostasis activates endoplasmic reticulum (ER) stress coping responses including the unfolded protein response (UPR). There are three ER resident stress sensors responsible for UPR activation - IRE1α, PERK and ATF6.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) plays critical roles in cell proliferation and tumorigenesis. Autophagy has emerged as a potential mechanism involved in the acquired resistance to anti-EGFR treatments, however, the molecular mechanisms has not been fully addressed. In this study, we identified EGFR interacts with STYK1, a positive autophagy regulator, in EGFR kinase activity dependent manner.
View Article and Find Full Text PDFAutophagy is a highly conserved recycling process of eukaryotic cells that degrades protein aggregates or damaged organelles with the participation of autophagy-related proteins. Membrane bending is a key step in autophagosome membrane formation and nucleation. A variety of autophagy-related proteins (ATGs) are needed to sense and generate membrane curvature, which then complete the membrane remodeling process.
View Article and Find Full Text PDFGiven its critical role in cell mitosis, the tubulin γ chain represents a viable chemotherapeutic target to solve the specificity issues associated with targeting α and β tubulin. Since γ tubulin is overexpressed in glioblastoma multiforme (GBM) and some breast lesions, the glaziovianin A derivative gatastatin, presented as a γ-tubulin-specific inhibitor, could yield a successful therapeutic strategy. The present work aims to identify the binding sites and modes of gatastatin and its derivatives through molecular-docking simulations.
View Article and Find Full Text PDFSignal Transduct Target Ther
February 2023
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein with an N-terminal domain that resides in the lumen of the ER and a C-terminal domain that extends into the cytosol. Calnexin is commonly referred to as a molecular chaperone involved in the folding and quality control of membrane-associated and secreted proteins, a function that is attributed to its ER- localized domain with a structure that bears a strong resemblance to another luminal ER chaperone and Ca-binding protein known as calreticulin. Studies have discovered that the cytosolic C-terminal domain of calnexin undergoes distinct post-translational modifications and interacts with a variety of proteins.
View Article and Find Full Text PDFFront Pharmacol
January 2023
Systemic lupus erythematosus (SLE) is a common multisystem, multiorgan heterozygous autoimmune disease. The main pathological features of the disease are autoantibody production and immune complex deposition. Autophagy is an important mechanism to maintain cell homeostasis.
View Article and Find Full Text PDFCisplatin is an effective chemotherapeutic agent, yet its use is limited by several adverse drug reactions, known as cisplatin-induced toxicities (CITs). We recently demonstrated that cisplatin could elicit proinflammatory responses associated with CITs through Toll-like receptor 4 (TLR4). TLR4 is best recognized for binding bacterial lipopolysaccharide (LPS) via its coreceptor, MD-2.
View Article and Find Full Text PDF