Publications by authors named "Mahmoud Aldamasy"

The properties of metal-centred species in metal halide perovskite precursor solutions substantially influence the formation and evolution of colloidal particles, which in turn dictate the crystallisation process and the film quality. In this work, we assess the "hard" and "soft" Lewis acid characteristics of Sn and Pb cations as a strategy to modulate the chemical environment of these metal-containing species in mixed-metal tin-lead perovskite precursor solutions. We observe enhanced simultaneous access to both metal centres upon adding compounds with functional groups suggested by the hard-soft acid-base principle.

View Article and Find Full Text PDF

Metal halide perovskite solar cells (PSCs) are promising as the next-generation photovoltaic technology. However, the inferior stability under various temperatures remains a significant obstacle to commercialization. Here, a heat-triggered dynamic self-healing framework (HDSF) is implemented to repair defects at grain boundaries caused by thermal variability, enhancing PSCs' temperature stability.

View Article and Find Full Text PDF

Tin-based perovskite solar cells offer a less toxic alternative to their lead-based counterparts. Despite their promising optoelectronic properties, their performances still lag behind, with the highest power conversion efficiencies reaching around 15%. This efficiency limitation arises primarily from electronic defects leading to self-p-doping and stereochemical activity of the Sn(II) ion, which distorts the atomic arrangement in the material.

View Article and Find Full Text PDF

Mixed tin-lead (Sn-Pb) perovskites have attracted the attention of the community due to their narrow bandgap, ideal for photovoltaic applications, especially tandem solar cells. However, the oxidation and rapid crystallization of Sn and the interfacial traps hinder their development. Here, cross-linkable [6,6]-phenyl-C-butyric styryl dendron ester (C-PCBSD) is introduced during the quenching step of perovskite thin film processing to suppress the generation of surface defects at the electron transport layer interface and improve the bulk crystallinity.

View Article and Find Full Text PDF

Interface-induced nonradiative recombination losses at the perovskite/electron transport layer (ETL) are an impediment to improving the efficiency and stability of inverted (p-i-n) perovskite solar cells (PSCs). Tridecafluorohexane-1-sulfonic acid potassium (TFHSP) is employed as a multifunctional dipole molecule to modify the perovskite surface. The solid coordination and hydrogen bonding efficiently passivate the surface defects, thereby reducing nonradiative recombination.

View Article and Find Full Text PDF

Blue quantum dot (QD) light-emitting diodes (QLEDs) exhibit unsatisfactory operational stability and electroluminescence (EL) properties due to severe nonradiative recombination induced by large numbers of dangling bond defects and charge imbalance in QD. Herein, dipolar aromatic amine-functionalized molecules with different molecular polarities are employed to regulate charge transport and passivate interfacial defects between QD and the electron transfer layer (ETL). The results show that the stronger the molecular polarity, especially with the -CF groups possessing a strong electron-withdrawing capacity, the more effective the defect passivation of S and Zn dangling bonds at the QD surface.

View Article and Find Full Text PDF

Tin halide perovskites are an appealing alternative to lead perovskites. However, owing to the lower redox potential of Sn(II)/Sn(IV), particularly under the presence of oxygen and water, the accumulation of Sn(IV) at the surface layer will negatively impact the device's performance and stability. To this end, this work has introduced a novel multifunctional molecule, 1,4-phenyldimethylammonium dibromide diamine (phDMADBr), to form a protective layer on the surface of Sn-based perovskite films.

View Article and Find Full Text PDF

Daily temperature variations induce phase transitions and lattice strains in halide perovskites, challenging their stability in solar cells. We stabilized the perovskite black phase and improved solar cell performance using the ordered dipolar structure of β-poly(1,1-difluoroethylene) to control perovskite film crystallization and energy alignment. We demonstrated p-i-n perovskite solar cells with a record power conversion efficiency of 24.

View Article and Find Full Text PDF

Controlling the crystallization of perovskite in a thin film is essential in making solar cells. Processing tin-based perovskite films from solution is challenging because of the uncontrollable faster crystallization of tin than the most used lead perovskite. The best performing devices are prepared by depositing perovskite from dimethyl sulfoxide because it slows down the assembly of the tin-iodine network that forms perovskite.

View Article and Find Full Text PDF

In 2020 dimethyl sulfoxide (DMSO), the ever-present solvent for tin halide perovskites, was identified as an oxidant for Sn . Nonetheless, alternatives are lacking and few efforts have been devoted to replacing it. To understand this trend it is indispensable to learn the importance of DMSO on the development of tin halide perovskites.

View Article and Find Full Text PDF

Perovskite solar cells are the rising star of third-generation photovoltaic technology. With a power conversion efficiency of 25.5%, the record efficiency is close to the theoretical maximum efficiency of a single-junction solar cell.

View Article and Find Full Text PDF
Article Synopsis
  • Tin is emerging as a safer alternative to lead in perovskite solar cells, but faces challenges due to its oxidation from Sn to Sn.
  • To tackle this issue, researchers are investigating the role of SnF in perovskite precursor solutions to prevent the formation of metallic Sn.
  • Analytical techniques reveal that fluoride ions preferentially bind to Sn, reducing Sn's inclusion in the perovskite structure and influencing the crystallization process of the material.
View Article and Find Full Text PDF

Novel all-inorganic Sn-Pb alloyed perovskites are developed aiming for low toxicity, low bandgap, and long-term stability. Among them, CsPb Sn I Br is predicted as an ideal perovskite with favorable band gap, but previously is demonstrated unable to convert to perovskite phase by thermal annealing. In this report, a series of CsPb Sn I Br perovskites with tunable bandgaps from 1.

View Article and Find Full Text PDF