Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Metal halide perovskite solar cells (PSCs) are promising as the next-generation photovoltaic technology. However, the inferior stability under various temperatures remains a significant obstacle to commercialization. Here, a heat-triggered dynamic self-healing framework (HDSF) is implemented to repair defects at grain boundaries caused by thermal variability, enhancing PSCs' temperature stability. HDSF, distributed at the grain boundaries and surface of the perovskite film, stabilizes the perovskite lattice and releases the perovskite crystal stress through the dynamic exchange reaction of sulfide bonds. The resultant PSCs achieved a power-conversion efficiency (PCE) of 26.32% (certified 25.84%) with elevated temperature stability, retaining 88.7% of the initial PCE after 1000 h at 85 °C. In a variable temperature cycling test (between -40 and 80 °C), the HDSF-treated device retained 87.6% of its initial PCE at -40 °C and 92.6% at 80 °C after 160 thermal cycles. This heat-triggered dynamic self-healing strategy could significantly enhance the reliability of PSCs in application scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202420378 | DOI Listing |