The Amazon rainforest is crucial for the global carbon cycle, yet annual changes in its aboveground biomass carbon (AGC) stock remain highly uncertain. Natural and local anthropogenic drivers such as deforestation, forest degradation, and regrowth following deforestation interact with large-scale climate variability to determine AGC dynamics. Here, we propose an approach to disaggregate low-frequency passive L-band microwave data over 2010-2020 and reconstruct maps of annual change.
View Article and Find Full Text PDFAmazon forests are becoming increasingly vulnerable to disturbances such as droughts, fires, windstorms, logging, and forest fragmentation, all of which lead to forest degradation. Nevertheless, quantifying the extent and severity of disturbances and their cumulative impact on forest degradation remains a significant challenge. In this study, we combined multispectral data from Landsat sensors with hyperspectral data from the Earth Observing-One (Hyperion/EO-1) sensor to evaluate the efficacy of multiple vegetation indices in detecting forest responses to disturbances in an experimentally burned forest in southeastern Amazonia.
View Article and Find Full Text PDFCarbon Balance Manag
November 2023
The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO vertical profiles, deforestation and fire data, as well as infraction notices related to illegal deforestation. We estimate that Amazonia carbon emissions increased from a mean of 0.
View Article and Find Full Text PDFStudies showed that Brazilian Amazon indigenous territories (ITs) are efficient models for preserving forests by reducing deforestation, fires, and related carbon emissions. Considering the importance of ITs for conserving socio-environmental and cultural diversity and the recent climb in the Brazilian Amazon deforestation, we used official remote sensing datasets to analyze deforestation inside and outside indigenous territories within Brazil's Amazon biome during the 2013-2021 period. Deforestation has increased by 129% inside ITs since 2013, followed by an increase in illegal mining areas.
View Article and Find Full Text PDFThe globally important carbon sink of intact, old-growth tropical humid forests is declining because of climate change, deforestation and degradation from fire and logging. Recovering tropical secondary and degraded forests now cover about 10% of the tropical forest area, but how much carbon they accumulate remains uncertain. Here we quantify the aboveground carbon (AGC) sink of recovering forests across three main continuous tropical humid regions: the Amazon, Borneo and Central Africa.
View Article and Find Full Text PDFFragmented tropical forest landscapes preserve much of the remaining biodiversity and carbon stocks. Climate change is expected to intensify droughts and increase fire hazard and fire intensities, thereby causing habitat deterioration, and losses of biodiversity and carbon stock losses. Understanding the trajectories that these landscapes may follow under increased climate pressure is imperative for establishing strategies for conservation of biodiversity and ecosystem services.
View Article and Find Full Text PDFIn the Amazon, deforestation and climate change lead to increased vulnerability to forest degradation, threatening its existing carbon stocks and its capacity as a carbon sink. We use satellite L-Band Vegetation Optical Depth (L-VOD) data that provide an integrated (top-down) estimate of biomass carbon to track changes over 2011-2019. Because the spatial resolution of L-VOD is coarse (0.
View Article and Find Full Text PDFThe Global Stocktake (GST), implemented by the Paris Agreement, requires rapid developments in the capabilities to quantify annual greenhouse gas (GHG) emissions and removals consistently from the global to the national scale and improvements to national GHG inventories. In particular, new capabilities are needed for accurate attribution of sources and sinks and their trends to natural and anthropogenic processes. On the one hand, this is still a major challenge as national GHG inventories follow globally harmonized methodologies based on the guidelines established by the Intergovernmental Panel on Climate Change, but these can be implemented differently for individual countries.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Human activities pose a major threat to tropical forest biodiversity and ecosystem services. Although the impacts of deforestation are well studied, multiple land-use and land-cover transitions (LULCTs) occur in tropical landscapes, and we do not know how LULCTs differ in their rates or impacts on key ecosystem components. Here, we quantified the impacts of 18 LULCTs on three ecosystem components (biodiversity, carbon, and soil), based on 18 variables collected from 310 sites in the Brazilian Amazon.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2021
With humanity facing an unprecedented climate crisis, the conservation of tropical forests has never been so important - their vast terrestrial carbon stocks can be turned into emissions by climatic and human disturbances. However, the duration of these effects is poorly understood, and it is unclear whether impacts are amplified in forests with a history of previous human disturbance. Here, we focus on the Amazonian epicenter of the 2015-16 El Niño, a region that encompasses 1.
View Article and Find Full Text PDFAn Acad Bras Cienc
August 2021
While the climate and human-induced forest degradation is increasing in the Amazon, fire impacts on forest dynamics remain understudied in the wetter regions of the basin, which are susceptible to large wildfires only during extreme droughts. To address this gap, we installed burned and unburned plots immediately after a wildfire in the northern Purus-Madeira (Central Amazon) during the 2015 El-Niño. We measured all individuals with diameter of 10 cm or more at breast height and conducted recensuses to track the demographic drivers of biomass change over 3 years.
View Article and Find Full Text PDFThe forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
In the Amazon rainforest, land use following deforestation is diverse and dynamic. Mounting evidence indicates that the climatic impacts of forest loss can also vary considerably, depending on specific features of the affected areas. The size of the deforested patches, for instance, was shown to modulate the characteristics of local climatic impacts.
View Article and Find Full Text PDFWe report large-scale estimates of Amazonian gap dynamics using a novel approach with large datasets of airborne light detection and ranging (lidar), including five multi-temporal and 610 single-date lidar datasets. Specifically, we (1) compared the fixed height and relative height methods for gap delineation and established a relationship between static and dynamic gaps (newly created gaps); (2) explored potential environmental/climate drivers explaining gap occurrence using generalized linear models; and (3) cross-related our findings to mortality estimates from 181 field plots. Our findings suggest that static gaps are significantly correlated to dynamic gaps and can inform about structural changes in the forest canopy.
View Article and Find Full Text PDF