Publications by authors named "Luiz E O C Aragao"

The Amazon rainforest is crucial for the global carbon cycle, yet annual changes in its aboveground biomass carbon (AGC) stock remain highly uncertain. Natural and local anthropogenic drivers such as deforestation, forest degradation, and regrowth following deforestation interact with large-scale climate variability to determine AGC dynamics. Here, we propose an approach to disaggregate low-frequency passive L-band microwave data over 2010-2020 and reconstruct maps of annual change.

View Article and Find Full Text PDF

Amazon forests are becoming increasingly vulnerable to disturbances such as droughts, fires, windstorms, logging, and forest fragmentation, all of which lead to forest degradation. Nevertheless, quantifying the extent and severity of disturbances and their cumulative impact on forest degradation remains a significant challenge. In this study, we combined multispectral data from Landsat sensors with hyperspectral data from the Earth Observing-One (Hyperion/EO-1) sensor to evaluate the efficacy of multiple vegetation indices in detecting forest responses to disturbances in an experimentally burned forest in southeastern Amazonia.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines variations in anthropogenic carbon net flux estimates from land, focusing on how definitions of "managed" vs. "unmanaged" forest land influence these calculations, using global Earth Observation datasets for accuracy.
  • In Brazil, from 2001 to 2020, Earth Observation (EO) data classified Brazil as a net carbon sink, while national reports indicated a net carbon source, highlighting discrepancies that can be traced back to differing methodologies and factors used in both datasets.
  • Results from Indonesia showed similar estimates between EO and national reports, but Malaysia revealed significant differences in both magnitude and sign, illustrating the complexities in accurately measuring forest carbon fluxes due to lack of detailed forest type data
View Article and Find Full Text PDF
Article Synopsis
  • Indigenous societies have occupied the Amazon for over 12,000 years, but their impact on the forest is still not fully understood.
  • New LIDAR technology has helped discover 24 pre-Columbian earthworks hidden under the forest, suggesting many more archaeological sites may exist.
  • The presence of 53 domesticated tree species linked to these earthworks indicates past human management of the forest, highlighting the significant influence ancient societies had on Amazonian ecosystems.
View Article and Find Full Text PDF

The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO vertical profiles, deforestation and fire data, as well as infraction notices related to illegal deforestation. We estimate that Amazonia carbon emissions increased from a mean of 0.

View Article and Find Full Text PDF

Studies showed that Brazilian Amazon indigenous territories (ITs) are efficient models for preserving forests by reducing deforestation, fires, and related carbon emissions. Considering the importance of ITs for conserving socio-environmental and cultural diversity and the recent climb in the Brazilian Amazon deforestation, we used official remote sensing datasets to analyze deforestation inside and outside indigenous territories within Brazil's Amazon biome during the 2013-2021 period. Deforestation has increased by 129% inside ITs since 2013, followed by an increase in illegal mining areas.

View Article and Find Full Text PDF

The globally important carbon sink of intact, old-growth tropical humid forests is declining because of climate change, deforestation and degradation from fire and logging. Recovering tropical secondary and degraded forests now cover about 10% of the tropical forest area, but how much carbon they accumulate remains uncertain. Here we quantify the aboveground carbon (AGC) sink of recovering forests across three main continuous tropical humid regions: the Amazon, Borneo and Central Africa.

View Article and Find Full Text PDF

Fragmented tropical forest landscapes preserve much of the remaining biodiversity and carbon stocks. Climate change is expected to intensify droughts and increase fire hazard and fire intensities, thereby causing habitat deterioration, and losses of biodiversity and carbon stock losses. Understanding the trajectories that these landscapes may follow under increased climate pressure is imperative for establishing strategies for conservation of biodiversity and ecosystem services.

View Article and Find Full Text PDF
Article Synopsis
  • About 2.5 million square kilometers of the Amazon forest are damaged by things like fires and logging, which is a lot of the remaining forest there.
  • This damage releases a huge amount of carbon into the air, just like deforestation does.
  • It's important to create plans that not only stop deforestation but also fix the problems causing the forest to degrade so that the forest can be protected better.
View Article and Find Full Text PDF

In the Amazon, deforestation and climate change lead to increased vulnerability to forest degradation, threatening its existing carbon stocks and its capacity as a carbon sink. We use satellite L-Band Vegetation Optical Depth (L-VOD) data that provide an integrated (top-down) estimate of biomass carbon to track changes over 2011-2019. Because the spatial resolution of L-VOD is coarse (0.

View Article and Find Full Text PDF

The Global Stocktake (GST), implemented by the Paris Agreement, requires rapid developments in the capabilities to quantify annual greenhouse gas (GHG) emissions and removals consistently from the global to the national scale and improvements to national GHG inventories. In particular, new capabilities are needed for accurate attribution of sources and sinks and their trends to natural and anthropogenic processes. On the one hand, this is still a major challenge as national GHG inventories follow globally harmonized methodologies based on the guidelines established by the Intergovernmental Panel on Climate Change, but these can be implemented differently for individual countries.

View Article and Find Full Text PDF
Article Synopsis
  • The productivity of rainforests, particularly in the Amazon, has been debated in relation to phosphorus availability, as previous experiments haven't firmly established phosphorus as the primary limiting factor, though nitrogen response has been similar.
  • Recent findings indicated that in an old-growth Amazon rainforest with low phosphorus soil, productivity increased significantly only with phosphorus fertilization, showcasing a clear link.
  • The observed benefits in fine root and canopy productivity highlight that phosphorus limitations could affect the Amazon's response to climate change and carbon sequestration efforts.
View Article and Find Full Text PDF

Human activities pose a major threat to tropical forest biodiversity and ecosystem services. Although the impacts of deforestation are well studied, multiple land-use and land-cover transitions (LULCTs) occur in tropical landscapes, and we do not know how LULCTs differ in their rates or impacts on key ecosystem components. Here, we quantified the impacts of 18 LULCTs on three ecosystem components (biodiversity, carbon, and soil), based on 18 variables collected from 310 sites in the Brazilian Amazon.

View Article and Find Full Text PDF

With humanity facing an unprecedented climate crisis, the conservation of tropical forests has never been so important - their vast terrestrial carbon stocks can be turned into emissions by climatic and human disturbances. However, the duration of these effects is poorly understood, and it is unclear whether impacts are amplified in forests with a history of previous human disturbance. Here, we focus on the Amazonian epicenter of the 2015-16 El Niño, a region that encompasses 1.

View Article and Find Full Text PDF
Article Synopsis
  • Amazonia contains the world's largest tropical forests and has been a significant carbon sink, but this is declining due to deforestation and climate change.
  • Researchers conducted 590 aircraft measurements from 2010 to 2018, finding that carbon emissions are higher in eastern Amazonia, largely due to fire emissions.
  • Eastern Amazonia, especially the southeast, is becoming a net carbon source due to intensified deforestation and climate stress, leading to increased tree mortality and decreased photosynthesis.
View Article and Find Full Text PDF

While the climate and human-induced forest degradation is increasing in the Amazon, fire impacts on forest dynamics remain understudied in the wetter regions of the basin, which are susceptible to large wildfires only during extreme droughts. To address this gap, we installed burned and unburned plots immediately after a wildfire in the northern Purus-Madeira (Central Amazon) during the 2015 El-Niño. We measured all individuals with diameter of 10 cm or more at breast height and conducted recensuses to track the demographic drivers of biomass change over 3 years.

View Article and Find Full Text PDF

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region.

View Article and Find Full Text PDF
Article Synopsis
  • Tropical secondary forests can capture carbon at rates up to 20 times faster than old-growth forests, with younger forests in the west of Brazil sequestering significantly more carbon than those in the east.
  • Environmental disturbances, such as fires and deforestation, can drastically reduce these regrowth rates by up to 55%.
  • Protecting and expanding secondary forests, while also conserving old-growth areas, is essential for maximizing their role in reducing Brazil's carbon emissions by 2030.
View Article and Find Full Text PDF

In the Amazon rainforest, land use following deforestation is diverse and dynamic. Mounting evidence indicates that the climatic impacts of forest loss can also vary considerably, depending on specific features of the affected areas. The size of the deforested patches, for instance, was shown to modulate the characteristics of local climatic impacts.

View Article and Find Full Text PDF

We report large-scale estimates of Amazonian gap dynamics using a novel approach with large datasets of airborne light detection and ranging (lidar), including five multi-temporal and 610 single-date lidar datasets. Specifically, we (1) compared the fixed height and relative height methods for gap delineation and established a relationship between static and dynamic gaps (newly created gaps); (2) explored potential environmental/climate drivers explaining gap occurrence using generalized linear models; and (3) cross-related our findings to mortality estimates from 181 field plots. Our findings suggest that static gaps are significantly correlated to dynamic gaps and can inform about structural changes in the forest canopy.

View Article and Find Full Text PDF