Increasing temperatures in the tropics will reduce performance of trees and agroforestry species and may lead to lasting damage and leaf death. One criterion to determine future forest resilience is to evaluate damage caused by temperature on Photosystem-II (PSII), a particularly sensitive component of photosynthesis. The temperature at which 50% of PSII function is lost (T) is a widely used measure of irreversible damage to leaves.
View Article and Find Full Text PDFThe Amazon forest carbon sink is declining, mainly as a result of land-use and climate change. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO vertical profiles, deforestation and fire data, as well as infraction notices related to illegal deforestation. We estimate that Amazonia carbon emissions increased from a mean of 0.
View Article and Find Full Text PDFUnlabelled: Extant climate observations suggest the dry season over large parts of the Amazon Basin has become longer and drier over recent decades. However, such possible intensification of the Amazon dry season and its underlying causes are still a matter of debate. Here we used oxygen isotope ratios in tree rings (δO) from six floodplain trees from the western Amazon to assess changes in past climate.
View Article and Find Full Text PDFLight and water availability are likely to vary over the lifespan of closed-canopy forest trees, with understory trees experiencing greater limitations to growth by light and canopy trees greater limitation due to drought. As drought and shade have opposing effects on isotope discrimination (Δ13C), paired measurement of ring width and Δ13C can potentially be used to differentiate between water and light limitations on tree growth. We tested this approach for Cedrela trees from three tropical forests in Bolivia and Mexico that differ in rainfall and canopy structure.
View Article and Find Full Text PDFAmazonia hosts the Earth's largest tropical forests and has been shown to be an important carbon sink over recent decades. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change. Here we investigate Amazonia's carbon budget and the main drivers responsible for its change into a carbon source.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2020
Diabetes Res Clin Pract
October 2020
Background: White coat adherence (WCA) is defined as an increased adherence to treatment regimens directly before a visit with a healthcare provider. Little is known on the effect of WCA on glucose control in adult patients with diabetes mellitus.
Methods: The present study is based on 618 CGM-observations of 276 patients with diabetes treated between January 2013 and July 2018.
Tree rings are thought to be a powerful tool to reconstruct historical growth changes and have been widely used to assess tree responses to global warming. Demographic inferences suggest, however, that typical sampling procedures induce spurious trends in growth reconstructions. Here we use the world's largest single tree-ring dataset (283,536 trees from 136,621 sites) from Quebec, Canada, to assess to what extent growth reconstructions based on these - and thus any similar - data might be affected by this problem.
View Article and Find Full Text PDFGlobal Biogeochem Cycles
February 2019
The terrestrial carbon sink has increased since the turn of this century at a time of increased fossil fuel burning, yet the mechanisms enhancing this sink are not fully understood. Here we assess the hypothesis that regional increases in nitrogen deposition since the early 2000s has alleviated nitrogen limitation and worked in tandem with enhanced CO fertilization to increase ecosystem productivity and carbon sequestration, providing a causal link between the parallel increases in emissions and the global land carbon sink. We use the Community Land Model (CLM4.
View Article and Find Full Text PDFIsotopes in tropical trees rings can improve our understanding of tree responses to climate. We assessed how climate and growing conditions affect tree-ring oxygen and carbon isotopes (δ18OTR and δ13CTR) in four Amazon trees. We analysed within-ring isotope variation for two terra firme (non-flooded) and two floodplain trees growing at sites with varying seasonality.
View Article and Find Full Text PDFGiven anticipated climate changes, it is crucial to understand controls on leaf temperatures including variation between species in diverse ecosystems. In the first study of leaf energy balance in tropical montane forests, we observed current leaf temperature patterns on 3 tree species in the Atlantic forest, Brazil, over a 10-day period and assessed whether and why patterns may vary among species. We found large leaf-to-air temperature differences (maximum 18.
View Article and Find Full Text PDFLight is the key energy input for all vegetated systems. Forest light regimes are complex, with the vertical pattern of light within canopies influenced by forest structure. Human disturbances in tropical forests impact forest structure and hence may influence the light environment and thus competitiveness of different trees.
View Article and Find Full Text PDFKey Message:
Abstract: Tropical tree rings have the potential to yield valuable ecological and climate information, on the condition that rings are annual and accurately dated. It is important to understand the factors controlling ring formation, since regional variation in these factors could cause trees in different regions to form tree rings at different times. Here, we use 'bomb-peak' radiocarbon (C) dating to test the periodicity of ring formation in trees from four sites across tropical South America.
Glob Chang Biol
March 2017
We recently demonstrated that growth trends from tree rings from Van Der Sleen et al. (Nature Geoscience, 8, 2015, 24) and Groenendijk et al. (Global Change Biology, 21, 2015, 3762) are affected by demographic biases.
View Article and Find Full Text PDFThe Amazon Basin is an important region for global CH emissions. It hosts the largest area of humid tropical forests, and around 20% of this area is seasonally flooded. In a warming climate it is possible that CH emissions from the Amazon will increase both as a result of increased temperatures and precipitation.
View Article and Find Full Text PDFGlobal Biogeochem Cycles
October 2015
In less than 15 years, the Amazon region experienced three major droughts. Links between droughts and fires have been demonstrated for the 1997/1998, 2005, and 2010 droughts. In 2010, emissions of 510 ± 120 Tg C were associated to fire alone in Amazonia.
View Article and Find Full Text PDFGlob Chang Biol
February 2017
Understanding responses of forests to increasing CO and temperature is an important challenge, but no easy task. Tree rings are increasingly used to study such responses. In a recent study, van der Sleen et al.
View Article and Find Full Text PDFUnderstanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations.
View Article and Find Full Text PDFUnderstanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia.
View Article and Find Full Text PDFWhile Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits.
View Article and Find Full Text PDFAim: The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset.
View Article and Find Full Text PDFForest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.
View Article and Find Full Text PDF