Texture strongly influences the soil's fundamental functions in forest ecosystems. In response to the growing demand for information on soil properties for environmental modeling, more and more studies have been conducted over the past decade to assess the spatial variability of soil properties on a regional to global scale. These investigations rely on the acquisition and compilation of numerous soil field records and on the development of statistical methods and technology.
View Article and Find Full Text PDFThe forest floor of boreal forest stores large amounts of organic C that may react to a warming climate and increased N deposition. It is therefore crucial to assess the impact of these factors on the temperature sensitivity of this C pool to help predict future soil CO2 emissions from boreal forest soils to the atmosphere. In this study, soil warming (+2-4°C) and canopy N addition (CNA; +0.
View Article and Find Full Text PDFTree rings are thought to be a powerful tool to reconstruct historical growth changes and have been widely used to assess tree responses to global warming. Demographic inferences suggest, however, that typical sampling procedures induce spurious trends in growth reconstructions. Here we use the world's largest single tree-ring dataset (283,536 trees from 136,621 sites) from Quebec, Canada, to assess to what extent growth reconstructions based on these - and thus any similar - data might be affected by this problem.
View Article and Find Full Text PDFProjected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change.
View Article and Find Full Text PDFIncreasing access to extensively replicated and broadly distributed tree-ring collections has led to a greater use of these large data sets to investigate climate forcing on tree growth. However, the number of chronologies added to large accessible databases is declining and few are updated, while chronologies are often sparsely distributed and are more representative of marginal growing environments. On the other hand, National Forest Inventories (NFI), although poorly replicated at the plot level as compared to classic dendrochronological sampling, contain a large amount of tree-ring data with high spatial density designed to be spatially representative of the forest cover.
View Article and Find Full Text PDFLarge areas of mine tailings are reclaimed by applying organic amendments such as paper mill sludge (PMS). Although mining industries can use PMS freshly generated by paper mills, operational constraints on paper industries make temporary landfilling of this material an unavoidable alternative for the paper industries, creating the most prominent PMS source for mining industries. This study aimed to quantify soil greenhouse gas (GHG) emissions (NO, CO, and CH) after application of landfilled PMS (LPMS; i.
View Article and Find Full Text PDFBiological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km(2) of managed forests in Quebec, Canada.
View Article and Find Full Text PDFDecreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases.
View Article and Find Full Text PDFSilvicultural restoration measures have been implemented in the northern hardwoods forests of southern Quebec, Canada, but their financial applicability is often hampered by the depleted state of the resource. To help identify sites most suited for the production of high quality timber, where the potential return on silvicultural investments should be the highest, this study assessed the impact of stand and site characteristics on timber quality in sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.
View Article and Find Full Text PDFEnvironmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest ecosystems through repeated measurements are largely nascent and uncoordinated. In eastern North America, repeated soil sampling has begun to provide valuable information on environmental problems such as air pollution.
View Article and Find Full Text PDFAn evaluation of the impact of dolomitic lime [CaMg(CO3)2] on soils (five years after treatment) and sapwood chemistry (after four growing seasons) was realized for a Ca-deficient sugar maple stand at the lake Clair watershed. The effect on humus chemistry was significant: exchangeable Mg and Ca, effective acidity (EA), base saturation (BSe), pH, and effective cation exchange capacity (CECe) significantly increased, while exchangeable Fe significantly decreased. In the B horizon, liming increased exchangeable Ca, Mg, and Mn concentrations while decreasing other acid cations.
View Article and Find Full Text PDFJ Environ Qual
February 2003
Previous studies have shown in noncalcareous soils that acid deposition may have increased soil leaching of basic cations above the input rate from soil weathering and atmospheric depositions. This phenomenon may have increased soil acidity levels, and, as a consequence, may have reduced the availability of these essential nutrients for forest growth. Fourteen plots of the Forest Ecosystem Research and Monitoring Network in Québec were used to examine the relation between post-industrial growth trends of sugar maple (Acer saccharum Marsh.
View Article and Find Full Text PDF