A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Large apparent growth increases in boreal forests inferred from tree-rings are an artefact of sampling biases. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tree rings are thought to be a powerful tool to reconstruct historical growth changes and have been widely used to assess tree responses to global warming. Demographic inferences suggest, however, that typical sampling procedures induce spurious trends in growth reconstructions. Here we use the world's largest single tree-ring dataset (283,536 trees from 136,621 sites) from Quebec, Canada, to assess to what extent growth reconstructions based on these - and thus any similar - data might be affected by this problem. Indeed, straightforward growth rate reconstructions based on these data suggest a six-fold increase in radial growth of black spruce (Picea mariana) from ~0.5 mm yr in 1800 to ~2.5 mm yr in 1990. While the strong correlation (R = 0.98) between this increase and that of atmospheric CO could suggest a causal relationship, we here unambiguously demonstrate that this growth trend is an artefact of sampling biases caused by the absence of old, fast-growing trees (cf. "slow-grower survivorship bias") and of young, slow-growing trees (cf. "big-tree selection bias") in the dataset. At the moment, we cannot envision how to remedy the issue of incomplete representation of cohorts in existing large-scale tree-ring datasets. Thus, innovation will be needed before such datasets can be used for growth rate reconstructions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497877PMC
http://dx.doi.org/10.1038/s41598-019-43243-1DOI Listing

Publication Analysis

Top Keywords

growth
8
artefact sampling
8
sampling biases
8
growth reconstructions
8
reconstructions based
8
based data
8
growth rate
8
rate reconstructions
8
large apparent
4
apparent growth
4

Similar Publications