Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Amazon rainforest is crucial for the global carbon cycle, yet annual changes in its aboveground biomass carbon (AGC) stock remain highly uncertain. Natural and local anthropogenic drivers such as deforestation, forest degradation, and regrowth following deforestation interact with large-scale climate variability to determine AGC dynamics. Here, we propose an approach to disaggregate low-frequency passive L-band microwave data over 2010-2020 and reconstruct maps of annual change. We show that the Amazon lost -0.37 ± 0.17 PgC, with gains by undisturbed (0.33 ± 0.13 PgC) and secondary forest growth (0.33 ± 0.05 PgC) outweighed by losses by deforestation (-0.55 ± 0.04 PgC), degradation (-0.42 ± 0.08 PgC), and agricultural areas (-0.06 ± 0.03 PgC). Losses in human-influenced land intensified over time and amounted to 60% of all gross losses in El Niño years. Our study reinforces the need for stronger implementation of policies and effective actions to control forest degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280014PMC
http://dx.doi.org/10.1038/s41467-025-61856-1DOI Listing

Publication Analysis

Top Keywords

forest degradation
8
pgc
6
human influence
4
influence amazon's
4
amazon's aboveground
4
aboveground carbon
4
carbon dynamics
4
dynamics intensified
4
intensified decade
4
decade amazon
4

Similar Publications

Efficient Production of Mano/Xylo-Oligosaccharides with Excellent Probiotic Activity through Coupling Catalysis.

J Agric Food Chem

September 2025

Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, C

This study develops a catalytic system using pyruvic acid (PYA) and Fe to efficiently coproduce xylo-oligosaccharides (XOS) and (manno-oligosaccharides) MOS from food material ( Lam. fruit.) and its waste peel, respectively.

View Article and Find Full Text PDF

The streams of Alaska's Brooks Range lie within a vast (~14M ha) tract of protected wilderness and have long supported both resident and anadromous fish. However, dozens of historically clear streams have recently turned orange and turbid. Thawing permafrost is thought to have exposed sulfide minerals to weathering, delivering iron and other potentially toxic metals to aquatic ecosystems.

View Article and Find Full Text PDF

Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.

View Article and Find Full Text PDF

Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.

Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.

View Article and Find Full Text PDF

Metabolomic and transcriptomic analyses unveil the accumulation of shikimic acid in the leaves of .

Front Plant Sci

August 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.

Introduction: Shikimic acid, as a critical precursor for oseltamivir synthesis in antiviral pharmaceuticals, faces escalating global demand. Although leaves have emerged as a promising natural source of shikimic acid owing to their exceptional content of this valuable compound and substantial biomass production capacity, the molecular mechanisms underlying its biosynthesis and downstream metabolic regulation in leaves remain largely unknown.

Methods: Here, the concentration of shikimic acid in 33 clones were assessed, and 1# (referred as HS) had the highest level.

View Article and Find Full Text PDF