Publications by authors named "Linhao Ge"

Potyvirus is the largest genus of plant RNA viruses, and the members in the genus are known to cause significant damage to a wide variety of crops. In this study, we performed small RNA (sRNA) deep sequencing for identification of potential virus (es) in collected cucumber leaves with mosaic symptoms from fields in Beijing. Through this high-throughput sequencing and subsequent PCR amplification, we obtained a complete viral genome sequence of 10,044 bp, which showed the highest similarity to the watermelon mosaic virus (WMV) isolate FBR04-37 and exhibited the typical characteristics of potyviruses in its genome organization.

View Article and Find Full Text PDF

Potyvirids are the largest group of plant RNA viruses. Pelota, a core component of RNA quality controls (RQC), promotes the degradation of potyvirids' genomic RNA by recognizing a specific GA motif. Here we demonstrate that the viral RNA-dependent RNA polymerase, NIb, acts as a SUMOylation decoy to effectively reduce Pelota SUMOylation by competing with SCE1 to inhibit Pelota-mediated RQC.

View Article and Find Full Text PDF

The chemical modifications of DNA and proteins are powerful mechanisms for regulating molecular and biological functions, influencing a wide array of signaling pathways in eukaryotes. Recent advancements in epitranscriptomics have shown that RNA modifications play crucial roles in diverse biological processes. Since their discovery in the 1970s, scientists have sought to decipher, identify, and elucidate the functions of these modifications across biological systems.

View Article and Find Full Text PDF

Nonsense-mediated decay (NMD) and autophagy play pivotal roles in restricting virus infection in plants. However, the interconnection between these two pathways in viral infections has not been explored. Here, it is shown that overexpression of NbSMG7 and NbUPF3 attenuates cucumber green mottle mosaic virus (CGMMV) infection by recognizing the viral internal termination codon and vice versa.

View Article and Find Full Text PDF

Plants use RNA interference for basal antiviral immunity, but emerging evidence suggests that additional RNA-targeting defense mechanisms also defend against invading viruses. Recent advancements in the understanding of RNA decay, RNA quality control, and N6-methyladenosine (mA) RNA modifications have unveiled new insights into the molecular arms race between plants and viruses.

View Article and Find Full Text PDF

N-methyladenosine (mA) is the most abundant eukaryotic mRNA modification and is involved in various biological processes. Increasing evidence has implicated that mA modification is an important anti-viral defense mechanism in mammals and plants, but it is largely unknown how mA regulates viral infection in plants. Here we report the dynamic changes and functional anatomy of mA in Nicotiana benthamiana and Solanum lycopersicum during Pepino mosaic virus (PepMV) infection.

View Article and Find Full Text PDF
Article Synopsis
  • Positive-sense single-stranded RNA viruses (like TuMV) use their RNA to make more RNA, and they need to create a different kind called negative-sense RNA for this process.
  • Scientists found that these negative-sense RNA viruses also have small parts (called rORFs) that can make proteins which help the virus infect cells better.
  • The proteins from rORFs can interact with other viral components and influence how viruses like SARS-CoV-2 spread, showing that these viruses are more complex than we thought.
View Article and Find Full Text PDF

Unlabelled: Autophagy plays an active anti-viral role in plants. Increasing evidence suggests that viruses can inhibit or manipulate autophagy, thereby winning the arms race between plants and viruses. Here, we demonstrate that overexpression of an mA writer from , SlHAKAI, could negatively regulate pepino mosaic virus (PepMV) infection, inhibit viral RNA and protein accumulations by affecting viral mA levels in tomato plants and vice versa.

View Article and Find Full Text PDF

Autophagy is a conserved intracellular degradation process that plays an active role in plant response to virus infections. Here we report that geminiviruses counteract activated autophagy-mediated antiviral defense in plant cells through the C2 proteins they encode. We found that, in Nicotiana benthamiana plants, tomato leaf curl Yunnan virus (TLCYnV) infection upregulated the transcription levels of autophagy-related genes (ATGs).

View Article and Find Full Text PDF

RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals. However, it is not known whether two other RNA quality control pathways, nonstop decay and no-go decay, are capable of restricting viruses in plants. Here, we show that the evolutionarily conserved Pelota-Hbs1 complex negatively regulates infection of plant viruses in the family Potyviridae (termed potyvirids), the largest group of plant RNA viruses that accounts for more than half of the viral crop damage worldwide.

View Article and Find Full Text PDF

Despite extensive understanding of antiviral RNAi in plants, whether and how natural variation in components of RNAi contributes to antiviral immunity remains obscure. Liu et al. recently identified novel positive and negative antiviral RNAi regulators, supporting RNAi's principal role in the dynamic virus-host coevolution in natural ecosystems.

View Article and Find Full Text PDF

Genetically enhancing drought tolerance and nutrient use efficacy enables sustainable and stable wheat production in drought-prone areas exposed to water shortages and low soil fertility, due to global warming and declining natural resources. In this study, wheat plants, exhibiting improved drought tolerance and N-use efficacy, were developed by introducing GmTDN1, a gene encoding a DREB-like transcription factor, into two modern winter wheat varieties, cv Shi4185 and Jimai22. Overexpressing GmTDN1 in wheat resulted in significantly improved drought and low-N tolerance under drought and N-deficient conditions in the greenhouse.

View Article and Find Full Text PDF

The nuclear localization signal (NLS) and nuclear export signal (NES) are key signatures of proteins for controlling nuclear import and export. The NIb protein of turnip mosaic virus (TuMV) is an RNA-dependent RNA polymerase (RdRP) that is absolutely required for viral genome replication. Previous studies have shown that NIb is a nucleocytoplasmic shuttling protein and contains four putative NES and four putative NLS motifs.

View Article and Find Full Text PDF

Exportin 1/XPO1 is an important nuclear export receptor that binds directly to cargo proteins and translocates the cargo proteins to the cytoplasm. To understand XPO1 protein functions during potyvirus infections, we investigated the nuclear export of the NIb protein encoding the RNA-dependent RNA polymerase (RdRp) of turnip mosaic virus (TuMV). Previously, we found that NIb is transported to the nucleus after translation and sumoylated by the sumoylation (small ubiquitin-like modifier) pathway to support viral infection.

View Article and Find Full Text PDF

Foxtail millet () originated in China and is generally cultivated in arid and barren soil. Through long-term harsh environmental selection, foxtail millet has acquired significant drought resistance. However, the molecular mechanism of foxtail millet drought resistance is still unknown.

View Article and Find Full Text PDF

Foxtail millet (), which originated in China, has a strong tolerance to low nutrition stresses. However, the mechanism of foxtail millet tolerance to low-nitrogen stress is still unknown. In this study, the transcriptome of foxtail millet under low-nitrogen stress was systematically analyzed.

View Article and Find Full Text PDF