98%
921
2 minutes
20
Nonsense-mediated decay (NMD) and autophagy play pivotal roles in restricting virus infection in plants. However, the interconnection between these two pathways in viral infections has not been explored. Here, it is shown that overexpression of NbSMG7 and NbUPF3 attenuates cucumber green mottle mosaic virus (CGMMV) infection by recognizing the viral internal termination codon and vice versa. NbSMG7 is subjected to autophagic degradation, which is executed by its interaction with one of the autophagy-related proteins, NbATG8i. Mutation of the ATG8 interacting motif (AIM) in NbSMG7 (SMG7mAIM1) abolishes the interaction and comprises its autophagic degradation. Silencing of NbSMG7 and NbATG8i, or NbUPF3 and NbATG8i, compared to silencing each gene individually, leads to more virus accumulations, but overexpression of NbSMG7 and NbATG8i fails to achieve more potent virus inhibition. When CGMMV is co-inoculated with NbSMG7mAIM1 or with NbUPF3, compared to co-inoculating with NbSMG7 in NbATG8i transgene plants, the inoculated plants exhibit milder viral phenotypes. These findings reveal that NMD-mediated virus inhibition is impaired by the autophagic degradation of SMG7 in a negative feedback loop, and a novel regulatory interplay between NMD and autophagy is uncovered, providing insights that are valuable in optimizing strategies to harness NMD and autophagy for combating viral infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348178 | PMC |
http://dx.doi.org/10.1002/advs.202400978 | DOI Listing |
Cells
August 2025
Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
This review highlights the emerging functional implications of nonsense-mediated mRNA decay (NMD) in human diseases, with a focus on its therapeutic potential for cardiovascular disease. NMD, conserved from yeast to humans, is involved in apoptosis, autophagy, cellular differentiation, and gene expression regulation. NMD is a highly conserved surveillance mechanism that degrades mRNAs containing premature termination codons (PTCs) located upstream of the final exon-exon junction.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
July 2025
Mondor Institute of Biomedical Research, University of Paris Est Créteil, INSERM U955, Créteil, France.
Late-onset Pompe disease (LOPD) is caused by α-glucosidase (GAA) deficiency, leading to glycogen accumulation resulting in progressive muscular weakness and respiratory insufficiency. Glycogen overload, vacuolation, and autophagic accumulation are the histological hallmarks of the disease. However, markers capable of tracking the progression of LOPD across different disease stages remain insufficiently characterized.
View Article and Find Full Text PDFmedRxiv
June 2025
Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia.
Tubulinopathies encompass a wide spectrum of disorders resulting from variants in genes encoding α- and β-tubulins, the key components of microtubules. While previous studies have linked or dominantly inherited missense variants to neurodegenerative phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, hereditary spastic ataxia, and more recently, an isolated report of congenital myopathy, the full phenotypic and genotypic spectrum of -related disorders remains incompletely characterised. In this multi-centre study, we identified 13 novel missense variants in 31 individuals from 19 unrelated families.
View Article and Find Full Text PDFCell Rep
July 2025
GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China. Electronic address:
Nonsense-mediated mRNA decay (NMD) is a conserved RNA surveillance mechanism. Inhibition of NMD leads to increased expression of tumor neoantigens encoded by genes with premature termination codons (PTCs), thereby enhancing tumor immunogenicity. In this study, we find that protein levels of up-frameshift protein 1 (UPF1), a key factor in the NMD pathway, show significant differences in clinical tumor samples of microsatellite-stable (MSS) and microsatellite-unstable (MSI) colorectal cancer (CRC).
View Article and Find Full Text PDFAutophagy
July 2025
Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
Lipophagy engulfs lipid droplets and delivers them to lysosomes for degradation. We found that lipophagy levels were low in most fly tissues, except for the prothoracic gland (PG) during larval development. Therefore, we performed a small-scale screening in the PG to identify regulators of lipophagy.
View Article and Find Full Text PDF