Publications by authors named "Lawren Sack"

Plant cuticles protect the interior tissues from ambient hazards, including desiccation, UV light, physical wear, herbivores and pathogens. Consequently, cuticle properties are shaped by evolutionary selection. We compiled a global dataset of leaf cuticle thickness (CT) and accompanying leaf traits for 1212 species, mostly angiosperms, from 293 sites representing all vegetated continents.

View Article and Find Full Text PDF

Mature leaf area (LA) is a showcase of diversity - varying enormously within and across species, and associated with the productivity and distribution of plants and ecosystems. Yet, it remains unclear how developmental processes determine variation in LA. We introduce a mathematical framework pinpointing the origin of variation in LA by quantifying six epidermal 'developmental traits': initial mean cell size and number (approximating values within the leaf primordium), and the maximum relative rates and durations of cell proliferation and expansion until leaf maturity.

View Article and Find Full Text PDF

Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C grasses, a high photosynthetic rate (A) may depend on higher vein density (D) and hydraulic conductance (K). However, the higher D of C grasses suggests a hydraulic surplus, given their reduced need for high K resulting from lower stomatal conductance (g).

View Article and Find Full Text PDF

'Water potential' is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot- to landscape-scale without understanding its relationship with 'water content'. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem-scale drawing on the existing theory of pressure-volume (PV) relationships.

View Article and Find Full Text PDF

Identifying the physiological mechanisms by which plants are adapted to drought is critical to predict species responses to climate change. We measured the responses of leaf hydraulic and stomatal conductances (K and g, respectively) to dehydration, and their association with anatomy, in seven species of California Ceanothus grown in a common garden, including some of the most drought-tolerant species in the semi-arid flora. We tested for matching of maximum hydraulic supply and demand and quantified the role of decline of K in driving stomatal closure.

View Article and Find Full Text PDF

Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth's ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.

View Article and Find Full Text PDF

Leaf surface conductance to water vapor and CO2 across the epidermis (gleaf) strongly determines the rates of gas exchange. Thus, clarifying the drivers of gleaf has important implications for resolving the mechanisms of photosynthetic productivity and leaf and plant responses and tolerance to drought. It is well recognized that gleaf is a function of the conductances of the stomata (gs) and of the epidermis + cuticle (gec).

View Article and Find Full Text PDF

Premise: Previous studies have suggested a trade-off between trichome density (D) and stomatal density (D) due to shared cell precursors. We clarified how, when, and why this developmental trade-off may be overcome across species.

Methods: We derived equations to determine the developmental basis for D and D in trichome and stomatal indices (i and i) and the sizes of epidermal pavement cells (e), trichome bases (t), and stomata (s) and quantified the importance of these determinants of D and D for 78 California species.

View Article and Find Full Text PDF

Allometric relationships among the dimensions of leaves and their cells hold across diverse eudicotyledons, but have remained untested in the leaves of grasses. We hypothesised that geometric (proportional) allometries of cell sizes across tissues and of leaf dimensions would arise due to the coordination of cell development and that of cell functions such as water, nutrient and energy transport, and that cell sizes across tissues would be associated with light-saturated photosynthetic rate. We tested predictions across 27 globally distributed C and C grass species grown in a common garden.

View Article and Find Full Text PDF

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species.

View Article and Find Full Text PDF

The relationship between stomatal traits and environmental drivers across plant communities has important implications for ecosystem carbon and water fluxes, but it has remained unclear. Here, we measure the stomatal morphology of 4492 species-site combinations in 340 vegetation plots across China and calculate their community-weighted values for mean, variance, skewness, and kurtosis. We demonstrate a trade-off between stomatal density and size at the community level.

View Article and Find Full Text PDF
Article Synopsis
  • Intra-specific trait variation (ITV) is important for understanding plant responses to environmental changes, but it is often overlooked, especially for traits like pressure volume (PV) curve parameters.
  • A study defined a reference ITV based on mature sun leaves from individual plants under controlled conditions, and hypothesized that PV parameters would exhibit less variability compared to other leaf traits.
  • The research found that PV parameters indeed showed low ITV and maintained strong intraspecific relationships, supporting the idea that species-mean PV measures can be used to assess leaf water potential effectively in larger-scale applications.
View Article and Find Full Text PDF

A surge of papers have reported low leaf vulnerability to xylem embolism during drought. Here, we focus on the less studied, and more sensitive, outside-xylem leaf hydraulic responses to multiple internal and external conditions. Studies of 34 species have resolved substantial vulnerability to dehydration of the outside-xylem pathways, and studies of leaf hydraulic responses to light also implicate dynamic outside-xylem responses.

View Article and Find Full Text PDF

Water stress can cause declines in plant function that persist after rehydration. Recent work has defined 'resilience' traits characterizing leaf resistance to persistent damage from drought, but whether these traits predict resilience in whole-plant function is unknown. It is also unknown whether the coordination between resilience and 'resistance' - the ability to maintain function during drought - observed globally occurs within ecosystems.

View Article and Find Full Text PDF
Article Synopsis
  • The incidence of mangrove mortality due to drought is rising, but their long-term ability to adapt to severe drought conditions is not well understood.
  • A study compared leaf water relations in two mangrove species before and after a severe drought, finding that prior drought conditions enhanced salinity tolerance through coordinated physiological adjustments.
  • These adjustments allowed mangroves to maintain leaf function during dry seasons, but also indicated a risk of restricted water use as salinity increased, highlighting the importance of plasticity in leaf water relations for mangrove survival.
View Article and Find Full Text PDF

Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (Ψ ), a property that integrates the drought response of an ecosystem's plant community across the soil-plant-atmosphere continuum.

View Article and Find Full Text PDF

Within vascular plants, the partitioning of hydraulic resistance along the soil-to-leaf continuum affects transpiration and its response to environmental conditions. In trees, the fractional contribution of leaf hydraulic resistance (R ) to total soil-to-leaf hydraulic resistance (R ), or fR (=R /R ), is thought to be large, but this has not been tested comprehensively. We compiled a multibiome data set of fR using new and previously published measurements of pressure differences within trees in situ.

View Article and Find Full Text PDF
Article Synopsis
  • The 'Global Spectrum of Plant Form and Function Dataset' includes mean values for six key vascular plant traits, essential for understanding plant variation.
  • This dataset aggregates around 1 million trait records from the TRY database and other sources, encompassing 92,159 species mean values across 46,047 species.
  • Comprehensive data quality management and validation ensure this is the largest and most reliable collection of empirical data on vascular plant traits available.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how tropical plants react to dry conditions caused by climate change by looking at 1,117 different species.
  • They found that certain traits in plants, like how they manage water, change based on how much moisture is in their environment.
  • Evergreen plants need wet places to thrive, while some other plants can handle both dry and wet areas, showing that the environment plays a big role in how these plants survive.
View Article and Find Full Text PDF

Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (T ), particularly when transpirational cooling is curtailed by limited stomatal conductance.

View Article and Find Full Text PDF

With the rapid accumulation of plant trait data, major opportunities have arisen for the integration of these data into predicting ecosystem primary productivity across a range of spatial extents. Traditionally, traits have been used to explain physiological productivity at cell, organ, or plant scales, but scaling up to the ecosystem scale has remained challenging. Here, we show the need to combine measures of community-level traits and environmental factors to predict ecosystem productivity at landscape or biogeographic scales.

View Article and Find Full Text PDF

We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • * The study evaluated the effects of trehalose and polyacrylate-based hydrogels on tomato plants under drought conditions, measuring factors like chlorophyll concentration and growth rate.
  • * Results showed that the polyacrylate-based hydrogel enhanced tomato plant health during drought better than the trehalose hydrogel, but neither was effective during a second drought phase.
View Article and Find Full Text PDF