98%
921
2 minutes
20
Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (T ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy T . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging T than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high T 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.18539 | DOI Listing |
Anal Chem
September 2025
Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States.
Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).
View Article and Find Full Text PDFJ Drug Target
September 2025
Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Chronic constriction injury (CCI) of the sciatic nerve induces neuropathic pain, inflammation, oxidative stress, and neurodegenerative changes, impairing sensory and emotional function. While curcumin is well recognized for its anti-inflammatory and neuroprotective properties, its therapeutic use is limited by poor bioavailability. Curcumin liposomal nanoparticles (CLNs) offer improved delivery and stability.
View Article and Find Full Text PDFNurs Res
September 2025
College of Nursing & Institute of Nursing Research, Korea University, Seoul, South Korea.
Background: Existing research fails to address the complex nature of nonspecific chronic lower back pain (cLBP ) despite its detrimental effect on economic, societal, and medical expenditures.
Objectives: We developed a nurse-led, mobile-delivered self-management intervention-Problem-Solving Pain to Enhance Living Well (PROPEL-M)-and evaluated its usability, feasibility, and initial efficacy for South Korean adults with nonspecific cLBP.
Methods: This study was composed of two phases: (a) lab and field usability testing for a gamified mobile device application; and (b) a pilot study employing a one-arm pre-test and post-test design among adults aged 18-60 years with nonspecific cLBP.
ACS Appl Mater Interfaces
September 2025
Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.
View Article and Find Full Text PDFBrain Behav
September 2025
Tongde Hospital of Zhejiang Province Affiliated to Zhejiang Chinese Medical University(Tongde Hospital of Zhejiang Province), Hangzhou, China.
Background: Mental disorders frequently co-occur with pain, yet pain mechanisms in non-peripheral etiologies (e.g., chronic psychological stress) remain underexplored.
View Article and Find Full Text PDF