The rapid increase in the volume and variety of terrestrial biosphere observations (i.e., remote sensing data and in situ measurements) offers a unique opportunity to derive ecological insights, refine process-based models, and improve forecasting for decision support.
View Article and Find Full Text PDFExtreme storms are becoming more intense and frequent under climate change. Although these extreme wet events are smaller in extent and duration than drought events, recent evidence suggests the global impact of both extremes is similar. However, the impact of individual extreme storms on photosynthesis-and therefore on vegetation and the carbon cycle-remains difficult to predict, as photosynthesis may be suppressed via waterlogging or increased by the alleviation of moisture stress.
View Article and Find Full Text PDFGlob Chang Biol
November 2024
'Water potential' is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot- to landscape-scale without understanding its relationship with 'water content'. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem-scale drawing on the existing theory of pressure-volume (PV) relationships.
View Article and Find Full Text PDFTree Physiol
October 2024
Given the pressing challenges posed by climate change, it is crucial to develop a deeper understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and the vital services they offer. Soil and plant water potential play a pivotal role in governing the dynamics of water within ecosystems and exert direct control over plant function and mortality risk during periods of ecological stress. However, existing observations of water potential suffer from significant limitations, including their sporadic and discontinuous nature, inconsistent representation of relevant spatio-temporal scales and numerous methodological challenges.
View Article and Find Full Text PDFSpatiotemporal patterns of plant water uptake, loss, and storage exert a first-order control on photosynthesis and evapotranspiration. Many studies of plant responses to water stress have focused on differences between species because of their different stomatal closure, xylem conductance, and root traits. However, several other ecohydrological factors are also relevant, including soil hydraulics, topographically driven redistribution of water, plant adaptation to local climatic variations, and changes in vegetation density.
View Article and Find Full Text PDFIntegr Comp Biol
September 2024
Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth's ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.
View Article and Find Full Text PDFMetrics to quantify regulation of plant water status at the daily as opposed to the seasonal scale do not presently exist. This gap is significant since plants are hypothesised to regulate their water potential not only with respect to slowly changing soil drought but also with respect to faster changes in air vapour pressure deficit (VPD), a variable whose importance for plant physiology is expected to grow because of higher temperatures in the coming decades. We present a metric, the stringency of water potential regulation, that can be employed at the daily scale and quantifies the effects exerted on plants by the separate and combined effect of soil and atmospheric drought.
View Article and Find Full Text PDFPlant Cell Environ
September 2024
Predictive relationships between plant traits and environmental factors can be derived at global and regional scales, informing efforts to reorient ecological models around functional traits. However, in a changing climate, the environmental variables used as predictors in such relationships are far from stationary. This could yield errors in trait-environment model predictions if timescale is not accounted for.
View Article and Find Full Text PDFThe rooting-zone water-storage capacity-the amount of water accessible to plants-controls the sensitivity of land-atmosphere exchange of water and carbon during dry periods. How the rooting-zone water-storage capacity varies spatially is largely unknown and not directly observable. Here we estimate rooting-zone water-storage capacity globally from the relationship between remotely sensed vegetation activity, measured by combining evapotranspiration, sun-induced fluorescence and radiation estimates, and the cumulative water deficit calculated from daily time series of precipitation and evapotranspiration.
View Article and Find Full Text PDFAccurate estimation and forecasts of net biome CO exchange (NBE) are vital for understanding the role of terrestrial ecosystems in a changing climate. Prior efforts to improve NBE predictions have predominantly focused on increasing models' structural realism (and thus complexity), but parametric error and uncertainty are also key determinants of model skill. Here, we investigate how different parameterization assumptions propagate into NBE prediction errors across the globe, pitting the traditional plant functional type (PFT)-based approach against a novel top-down, machine learning-based "environmental filtering" (EF) approach.
View Article and Find Full Text PDFThe terrestrial carbon cycle is a major source of uncertainty in climate projections. Its dominant fluxes, gross primary productivity (GPP), and respiration (in particular soil respiration, R), are typically estimated from independent satellite-driven models and upscaled in situ measurements, respectively. We combine carbon-cycle flux estimates and partitioning coefficients to show that historical estimates of global GPP and R are irreconcilable.
View Article and Find Full Text PDFNat Geosci
March 2022
Extreme wildfires extensively impact human health and the environment. Increasing vapour pressure deficit (VPD) has led to a chronic increase in wildfire area in the western United States, yet some regions have been more affected than others. Here we show that for the same increase in VPD, burned area increases more in regions where vegetation moisture shows greater sensitivity to water limitation (plant-water sensitivity; R = 0.
View Article and Find Full Text PDFDroughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2022
We propose a novel, connectivity-oriented loss function for training deep convolutional networks to reconstruct network-like structures, like roads and irrigation canals, from aerial images. The main idea behind our loss is to express the connectivity of roads, or canals, in terms of disconnections that they create between background regions of the image. In simple terms, a gap in the predicted road causes two background regions, that lie on the opposite sides of a ground truth road, to touch in prediction.
View Article and Find Full Text PDFVariation in canopy water content (CWC) that can be detected from microwave remote sensing of vegetation optical depth (VOD) has been proposed as an important measure of vegetation water stress. However, the contribution of leaf surface water (LW ), arising from dew formation and rainfall interception, to CWC is largely unknown, particularly in tropical forests and other high-humidity ecosystems. We compared VOD data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and CWC predicted by a plant hydrodynamics model at four tropical sites in Brazil spanning a rainfall gradient.
View Article and Find Full Text PDF●Plants are characterized by the iso/anisohydry continuum depending on how they regulate leaf water potential (Ψ ). However, how iso/anisohydry changes over time in response to year-to-year variations in environmental dryness and how such responses vary across different regions remains poorly characterized. ●We investigated how dryness, represented by aridity index, affects the interannual variability of ecosystem iso/anisohydry at the regional scale, estimated using satellite microwave vegetation optical depth (VOD) observations.
View Article and Find Full Text PDFResolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land-atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean.
View Article and Find Full Text PDFAlthough primarily valued for their suitability for oceanographic applications and soil moisture estimation, microwave remote sensing observations are also sensitive to plant water content (M ). Since M depends on both plant water status and biomass, these observations have the potential to be useful for a range of plant drought response studies. In this paper, we introduce the principles behind microwave remote sensing observations to illustrate how they are sensitive to plant water content and discuss the relationship between landscape-scale M and common stand-scale metrics, including plant-scale relative water content, live fuel moisture content and leaf water potential.
View Article and Find Full Text PDFOver the past decade, the concept of isohydry or anisohydry, which describes the link between soil water potential (Ψ ), leaf water potential (Ψ ), and stomatal conductance (g ), has soared in popularity. However, its utility has recently been questioned, and a surprising lack of coordination between the dynamics of Ψ and g across biomes has been reported. Here, we offer a more expanded view of the isohydricity concept that considers effects of vapour pressure deficit (VPD) and leaf area index (A ) on the apparent sensitivities of Ψ and g to drought.
View Article and Find Full Text PDF