Publications by authors named "Camille S Delavaux"

Ericoid mycorrhizal (ErM) fungi (ErMF) are crucial for the establishment of thousands of ericaceous species in heathlands and wetlands by increasing their tolerance to harsh conditions and improving nutrient uptake. However, ErM research has largely focused on a limited number of host species and four ErMF species (especially Hyaloscypha hepaticicola and Oidiodendron maius, to a lesser extent H. bicolor/H.

View Article and Find Full Text PDF

Most plant species world-wide depend on one or more mutualisms - beneficial associations with other species. Evidence is emerging that these biotic mutualisms shape plant biogeography (i.e.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) are critical to native plant community ecology and influence plant invasions. Research has focused on nutritional benefits of AMF, although evidence shows that they may also confer pathogen resistance. However, most such work has focused on agriculturally relevant plant species.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are essential to plant community diversity and ecosystem functioning. However, increasing human land use represents a major threat to native AMF globally. Characterizing the loss of AMF diversity remains challenging because many taxa are undescribed, resulting in poor documentation of their biogeography and family-level disturbance sensitivity.

View Article and Find Full Text PDF

Conspecific density dependence (CDD) in plant populations is widespread, most likely caused by local-scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD-related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local-scale CDD and its causes, including species-specific antagonistic and mutualistic interactions.

View Article and Find Full Text PDF

Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs.

View Article and Find Full Text PDF

Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain.

View Article and Find Full Text PDF

The latitudinal diversity gradient (LDG) dominates global patterns of diversity, but the factors that underlie the LDG remain elusive. Here we use a unique global dataset to show that vascular plants on oceanic islands exhibit a weakened LDG and explore potential mechanisms for this effect. Our results show that traditional physical drivers of island biogeography-namely area and isolation-contribute to the difference between island and mainland diversity at a given latitude (that is, the island species deficit), as smaller and more distant islands experience reduced colonization.

View Article and Find Full Text PDF

Soil microbes impact plant community structure and diversity through plant-soil feedbacks. However, linking the relative abundance of plant pathogens and mutualists to differential plant recruitment remains challenging. Here, we tested for microbial mediation of pairwise feedback using a reciprocal transplant experiment in a lowland tropical forest in Panama paired with amplicon sequencing of soil and roots.

View Article and Find Full Text PDF

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species.

View Article and Find Full Text PDF

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.

View Article and Find Full Text PDF

Island biogeography has classically focused on abiotic drivers of species distributions. However, recent work has highlighted the importance of mutualistic biotic interactions in structuring island floras. The limited occurrence of specialist pollinators and mycorrhizal fungi have been found to restrict plant colonization on oceanic islands.

View Article and Find Full Text PDF

Plant-microbe interactions play an important role in structuring plant communities. Arbuscular mycorrhizal fungi (AMF) are particularly important. Nonetheless, increasing anthropogenic disturbance will lead to novel plant-AMF interactions, altering longstanding co-evolutionary trajectories between plants and their associated AMF.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF; Glomeromycota) are difficult to culture; therefore, establishing a robust amplicon-based approach to taxa identification is imperative to describe AMF diversity. Further, due to low and biased sampling of AMF taxa, molecular databases do not represent the breadth of AMF diversity, making database matching approaches suboptimal. Therefore, a full description of AMF diversity requires a tool to determine sequence-based placement in the Glomeromycota clade.

View Article and Find Full Text PDF
Article Synopsis
  • Plant colonization on islands may be limited by the availability of specific fungi called arbuscular mycorrhizal (AM) fungi, which don’t spread as easily as other types of mycorrhizal fungi.
  • Research shows that AM plants face more challenges in establishing on islands compared to other plant types, especially as island isolation increases, leading to fewer native AM species.
  • Interestingly, human activity seems to help AM plants thrive on islands, with higher proportions of these plants found in naturalized floras compared to native ones, particularly in more isolated and heavily used areas.
View Article and Find Full Text PDF

Soil-borne pathogens structure plant communities, shaping their diversity, and through these effects may mediate plant responses to climate change and disturbance. Little is known, however, about the environmental determinants of plant pathogen communities. Therefore, we explored the impact of climate gradients and anthropogenic disturbance on root-associated pathogens in grasslands.

View Article and Find Full Text PDF

With the advances of sequencing tools, the fields of environmental microbiology and soil ecology have been transformed. Today, the unculturable majority of soil microbes can be sequenced. Although these tools give us tremendous power and open many doors to answer important questions, we must understand how sample processing may impact our results and interpretations.

View Article and Find Full Text PDF

Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities.

View Article and Find Full Text PDF

Island biogeography has traditionally focused primarily on abiotic drivers of colonization, extinction and speciation. However, establishment on islands could also be limited by biotic drivers, such as the absence of symbionts. Most plants, for example, form symbioses with mycorrhizal fungi, whose limited dispersal to islands could act as a colonization filter for plants.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) can increase plant fitness under certain environmental conditions. Among the mechanisms that may drive this mutualism, the most studied is provisioning of nutrients by AMF in exchange for carbon from plant hosts. However, AMF may also provide a suite of non-nutritional benefits to plants including improved water uptake, disease resistance, plant chemical defense, soil aggregation, and allelochemical transport and protection.

View Article and Find Full Text PDF

Nitrogen (N) and phosphorus (P) deposition are increasing worldwide largely due to increased fertilizer use and fossil fuel combustion. Most work with N and P deposition in natural ecosystems has focused on temperate, highly industrialized, regions. Tropical regions are becoming more developed, releasing large amounts of these nutrients into the atmosphere.

View Article and Find Full Text PDF