Fluoroquinolones (FQs), potent antimicrobials, have shown potential in curbing cancer invasion and metastasis by affecting cell migration and extracellular matrix reshaping. However, the molecular mechanisms behind their impact remain unclear. The type III TGF-β receptor (TβR3, also called betaglycan), a co-receptor in the TGF-β superfamily, is often found to be downregulated in various human cancers.
View Article and Find Full Text PDFEur J Pharmacol
October 2021
Blood-retinal barrier breakdown is the main pathological characteristics of diabetic retinopathy (DR). Asymmetric dimethylarginine (ADMA) was reported to be elevated in DR patients. In this study, we observed the dynamic profile of ADMA, retinal morphology and permeability of BRB at 2, 4 or 8 week of diabetic rats induced by a single intraperitoneal injection of streptozocin (60 mg/kg) and in cultured rat retinal pericytes pretreated with D-glucose (30 mM) for 1, 3, 5 and 7 days or ADMA (3, 10, 30 μM) for 24, 48 and 72 h, trying to explore the effects of ADMA on blood-retinal barrier in DR.
View Article and Find Full Text PDFFibrosis is a reparative process with very few therapeutic options to prevent its progression to organ dysfunction. Chronic fibrotic diseases contribute to an estimated 45% of all death in the industrialized world. Asymmetric dimethylarginine (ADMA), an endothelial nitric oxide synthase inhibitor, plays a crucial role in the pathogenesis of various cardiovascular diseases associated with endothelial dysfunction.
View Article and Find Full Text PDFVascul Pharmacol
September 2018
Background And Objective: Diabetic pulmonary fibrosis is a severe disease that increases mortality risk of diabetes. However, the molecular mechanisms leading to pulmonary fibrosis in diabetes are poorly understood. This study investigated the roles of epithelial-mesenchymal transition (EMT) and the associated molecular mechanisms in streptozotocin (STZ)-induced rat pulmonary fibrosis.
View Article and Find Full Text PDFNumerous studies demonstrate that reactive aldehydes are highly toxic and aldehyde dehydrogenase 2 (ALDH2)-mediated detoxification of reactive aldehydes is thought as an endogenous protective mechanism against reactive aldehydes-induced cell injury. This study aims to explore whether lipoic acid, a potential ALDH2 activator, is able to protect gastric mucosa from ethanol-induced injury through a mechanism involving clearance of reactive aldehydes. The rats received 60% of acidified ethanol through intragastric administration and held for 1 h to establish a mucosal injury model.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
October 2016
Microvascular complications are the leading causes of acquired blindness, end-stage renal failure, and varieties of neuropathy associated with diabetes. Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, is involved in endothelial dysfunction, oxidative stress, and inflammation associated with the progression of diabetic microvascular complications. Elevated ADMA has been detected in experimental animals and patients with diabetic microangiopathy like retinopathy, nephropathy, and neuropathy.
View Article and Find Full Text PDFSuppression of dimethylarginine dimethylaminohydrolase (DDAH) activation is related to endothelial dysfunction in hyperlipidemia, and nonmuscle myosin regulatory light chain (nmMLC) has been show to exert transcriptional function in regulation of gene expression. This study aims to explore whether the suppression of DDAH activation promotes endothelial injury under the condition of hyperlipidemia and whether nmMLC can regulate DDAH expression in a phosphorylation-dependent manner. The rats were fed with high-fat diet for 8 weeks to establish a hyperlipidemic model, which showed an increase in plasma lipids and endothelial injury, accompanied by an elevation in myosin light chain kinase (MLCK) activity, phosphorylated nmMLC (p-nmMLC) level, and asymmetric dimethylarginine (ADMA) content as well as a reduction in DDAH2 expression, DDAH activity, and nitric oxide (NO) content.
View Article and Find Full Text PDFThe risk of cardiovascular complications in diabetic patients is mainly associated with endothelial dysfunction. Reduced number of EPCs and impaired function of EPCs in diabetes result in imbalance of endothelial homeostasis and dysfunction of vessels. In patients with diabetes mellitus, plasma levels of asymmetric dimethylarginine (ADMA) were elevated, while the expression and activity of dimethylarginine dimethylaminohydrolase (DDAH) were reduced.
View Article and Find Full Text PDFNuclear myosin regulates gene transcription and this novel function might be modulated through phosphorylation of the myosin regulatory light chain (p-MLC20). Nonmuscle MLC20 (nmMLC20) is also present in the nuclei of cardiomyocytes and a potential nmMLC20 binding sequence has been identified in the promoter of the xanthine oxidase (XO) gene. Thus, we investigated its function in the regulation of XO transcription after myocardial ischemia/reperfusion (IR).
View Article and Find Full Text PDFEur J Pharmacol
March 2015
Atherosclerosis, one of the most common causes of cardiovascular diseases, is associated with a high morbidity and mortality. It is known that inflammation, vascular smooth muscle cell (VSMCs) phenotypic modulation and atheroma plaque vulnerability are main pathological characteristics of atherosclerosis. The discoidin domain receptors (DDRs), as unique collagen-binding tyrosine kinase receptors, were reported to be involved in the above pathogenesis process of atherogenesis.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2014
Vitexin compound B-1 (VB-1) is a novel member of the vitexins family isolated from the seeds of the Chinese herb Vitex negundo. This study aims to investigate whether VB-1 is able to protect nerve cells against oxidative injury and whether the antioxidative effects of VB-1 occur through a mechanism involving the inhibition of NADPH oxidase (NOX) in a manner of hypoxia-inducible factor 1α (HIF-1α)-dependent. To establish a neuronal in vitro model of oxidative stress, the differentiated PC12 cells were subjected to 5 h of hypoxia followed by 20 h of reoxygenation (H/R).
View Article and Find Full Text PDFMol Cell Proteomics
August 2013
Heparan sulfate (HS) is a linear, abundant, highly sulfated polysaccharide that expresses in the vasculature. Recent genetic studies documented that HS critically modulates various endothelial cell functions. However, elucidation of the underlying molecular mechanism has been challenging because of the presence of a large number of HS-binding ligands found in the examined experimental conditions.
View Article and Find Full Text PDFInt Immunopharmacol
June 2013
Endothelial dysfunction is the early stage of atherosclerosis, which is typically associated with rheumatoid arthritis (RA), a chronic inflammatory autoimmune disorder. Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, is not only an independent predictor for endothelial dysfunction but also a proinflammatory mediator. It has been shown that the level of ADMA was elevated in patients with RA.
View Article and Find Full Text PDFEur J Pharmacol
December 2012
Mounting evidence indicates that cardiovascular events are a main cause of excessive mortality of autoimmune disorders like type I diabetes mellitus and rheumatic diseases. Inflammation and endothelial dysfunction, independent predictors to cardiovascular disease, are hallmarks of autoimmunity. Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, can cause or contribute to the inflammatory syndrome and endothelial dysfunction.
View Article and Find Full Text PDFThere are significant morphological and biochemical alterations during nerve growth factor (NGF)-promoted neuronal differentiation, and the process is regulated by molecules, including nitric oxide (NO). Dimethylarginine dimethylaminohydrolase (DDAH) is thought to play a critical role in regulating NO production via hydrolyzing the endogenous NO synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA). Thus, we tested the role of DDAH in NGF-promoted differentiation of PC12 (pheochromocytoma) cells.
View Article and Find Full Text PDFPrevious studies have shown that the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) and its specific hydrolase dimethylarginine dimethylaminohydrolase (DDAH) are involved in the regulation of apoptosis in different cell types. In the present study, we investigated the role of the DDAH/ADMA pathway in cobalt chloride (CoCl(2))-induced apoptosis and the antiapoptotic effect of all-trans retinoic acid (atRA) in undifferentiated pheochromocytoma (PC12) cells. Treatment of CoCl(2) (125 microM) for 48 hr significantly induced the apoptosis of PC12 cells, concomitantly with increased intracellular reactive oxygen species (ROS) production and caspase-3 activity.
View Article and Find Full Text PDFAsymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, is emerging as a key contributor for endothelial dysfunction associated with inflammation. Statins can inhibit vascular inflammatory reaction and improve endothelial function. The aim of this study was to investigate in human endothelial cells the signaling pathways of ADMA-induced inflammatory reaction and potential inhibitory effects of simvastatin.
View Article and Find Full Text PDFAsymmetric dimethylarginine (ADMA), a major endogenous nitric oxide (NO) synthase inhibitor, is thought to be a key contributor for endothelial dysfunction. Decrease in activity of dimethylarginine dimethylaminohydrolase (DDAH), a major hydrolase of ADMA, causes accumulation of ADMA in some risk factors of atherosclerosis, including hypercholesterolemia. Taurine is a semi-essential amino acid that has previously been shown to have endothelial protective effects.
View Article and Find Full Text PDFHypothesis: Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor (NOS), may play an important role in endothelium dysfunction. Probucol, a potent antioxidant drug, may improve endothelium function via reduction of NOS inhibitor level. The present study examined whether the decreased level of ADMA by probucol is related to enhancement of protein arginine methyltransferase I (PRMT I) expression and reduction of dimethylarginine dimethylaminohydrolase (DDAH) activity.
View Article and Find Full Text PDFBackground: Previous investigations have indicated that the level of asymmetric dimethylarginine (ADMA) is increased in diabetic patients and animals, and rosiglitazone has a protective effect on the endothelium. In the present study, we tested the relationship between protective effects of rosiglitazone and ADMA in streptozotocin (STZ)-induced diabetic rats and cultured endothelial cells.
Methods: Blood samples were collected from carotid artery.
Naunyn Schmiedebergs Arch Pharmacol
May 2005
Previous investigations have demonstrated that endogenous inhibitors of nitric oxide synthase (NOS), such as asymmetric dimethylarginine (ADMA), contribute importantly to endothelial dysfunction, and that fenofibrate has a protective effect on the endothelium in rats treated with low-density lipoprotein (LDL) by reducing ADMA levels. In the present study, we explored further the possible mechanism underlying inhibition of ADMA generation by fenofibrate in cultured human umbilical vein endothelial cells (HUVECs). Endothelial injury was induced in cultured HUVECs by incubation with oxidative LDL (ox-LDL) and the levels of ADMA, lactate dehydrogenase (LDH), NO and tumour necrosis factor-alpha (TNF-alpha) in the conditioned medium were measured.
View Article and Find Full Text PDFActa Pharmacol Sin
December 2004
Aim: To study the protective effect of aspirin on damages of the endothelium induced by low-density lipoprotein (LDL), and whether the protective effect of aspirin is related to reduction of nitric oxide synthase inhibitor level.
Methods: Vascular endothelial injury was induced by a single injection of native LDL (4 mg/kg) in rats. Vasodilator responses to acetylcholine (ACh) in the isolated aortic rings were determined, and serum concentrations of asymmetric dimethylarginine (ADMA), malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-alpha), and the activity of dimethylaminohydrolase (DDAH) were measured.