Publications by authors named "Jorge Garcia-Giron"

How species interact with habitat patches is influenced primarily by habitat configuration (e.g., connectivity) and species' functional traits.

View Article and Find Full Text PDF

Biological invasion is a key driver of biodiversity loss, leading to significant changes in community composition and structure. Hence, understanding how biological invasions influence community assembly processes is crucial for identifying invasion mechanisms and developing management strategies aimed at minimizing their impacts on natural ecosystems. Beyond environmental filtering or niche-based exclusion, biotic interactions (e.

View Article and Find Full Text PDF

Body size is a key trait in ecology due to its influence on metabolism and many other life-history traits that affect population and community responses to environmental variation as well as ecosystem properties. The size spectrum represents the relationship between abundance (or biomass) and body size, independent of species identity. Size spectrum parameters, such as the slope or intercept, have been applied extensively as indicators of ecological status across multiple ecosystem types.

View Article and Find Full Text PDF

Disentangling the mechanisms underlying community assembly is a central topic in community ecology and an important prerequisite for bioassessment. The relative importance of deterministic and stochastic processes is expected to change among organisms relying on different dispersal modes and may vary considerably through time. However, how seasonal change and dispersal modes will interplay to influence community assembly remains to be demonstrated.

View Article and Find Full Text PDF

Understanding the relative role of dispersal dynamics and niche constraints is not only a core task in community ecology, but also becomes an important prerequisite for bioassessment. Despite the recent progress in our knowledge of community assembly in space and time, patterns and processes underlying biotic communities in alpine glacierized catchments remain mostly ignored. To fill this knowledge gap, we combined the recently proposed dispersal-niche continuum index (DNCI) with traditional constrained ordinations and idealized patterns of species distributions to unravel community assembly mechanisms of different key groups of primary producers and consumers (i.

View Article and Find Full Text PDF

Quantitative approaches are needed to complement qualitative explorations to identify sites with unique geodiversity and thereby guide geoconservation and geoheritage programmes. Here, we introduce the concept and associated index of 'geodiversity uniqueness'. This index is based on a numerical analysis of geofeatures and allows the identification of sites with unique geodiversity in a study area.

View Article and Find Full Text PDF

Human land-use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land-uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified.

View Article and Find Full Text PDF

Anthropogenic disturbances have become one of the primary causes of biodiversity decline in freshwater ecosystems. Beyond the well-documented loss of taxon richness in increasingly impacted ecosystems, our knowledge on how different facets of α and β diversity respond to human disturbances is still limited. Here, we examined the responses of taxonomic (TD), functional (FD) and phylogenetic (PD) α and β diversity of macroinvertebrate communities to human impact across 33 floodplain lakes surrounding the Yangtze River.

View Article and Find Full Text PDF

Freshwater ecosystems are of worldwide importance for maintaining biodiversity and sustaining the provision of a myriad of ecosystem services to modern societies. Plants, one of the most important components of these ecosystems, are key to water nutrient removal, carbon storage, and food provision. Understanding how the functional connection between freshwater plants and ecosystems is affected by global change will be key to our ability to predict future changes in freshwater systems.

View Article and Find Full Text PDF

It has long been debated why groups such as non-avian dinosaurs became extinct whereas mammals and other lineages survived the Cretaceous/Paleogene mass extinction 66 million years ago. We used Markov networks, ecological niche partitioning, and Earth System models to reconstruct North American food webs and simulate ecospace occupancy before and after the extinction event. We find a shift in latest Cretaceous dinosaur faunas, as medium-sized species counterbalanced a loss of megaherbivores, but dinosaur niches were otherwise stable and static, potentially contributing to their demise.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how factors like environmental conditions, space, and species interactions shape fish communities in the Qiupu River, China.
  • It highlights the importance of species interactions—particularly among omnivores—as key to maintaining fish networks and influencing community structure across different seasons.
  • The findings suggest that understanding these interactions is crucial for effective management of freshwater ecosystems, urging ecologists to incorporate biotic factors in their assessments.
View Article and Find Full Text PDF

Body size descriptors and associated resemblance measurements may provide useful tools for forecasting ecological responses to increasing anthropogenic land‒use disturbances. Yet, the influences of agriculture and urbanisation on the size structure of biotic assemblages have seldom been investigated in running waters. Using a comprehensive dataset on stream macroinvertebrates from 21 river basins across Western Finland, we assessed whether the structure of assemblages via changes in taxonomic composition and body size distributions responded predictably to anthropogenic land‒use impacts.

View Article and Find Full Text PDF

Diatoms are important organisms in freshwater ecosystems due to their position as primary producers and therefore, analyzing their assemblages provides relevant information on ecosystem functioning. Diatoms have historically been identified based on morphological traits, which is time-consuming and requires well-trained specialists. Nevertheless, DNA barcoding offers an alternative approach to overcome some limitations of the morphological method.

View Article and Find Full Text PDF

Patterns of species rarity have long fascinated ecologists, yet most of what we know about the natural world stems from studies of common species. A large proportion of freshwater plant species has small range sizes and are therefore considered rare. However, little is known about the mechanisms and geographical distribution of rarity in the aquatic realm and to what extent diversity of rare species in freshwater plants follows their terrestrial counterparts.

View Article and Find Full Text PDF

Documenting the patterns of biological diversity on Earth has always been a central challenge in macroecology and biogeography. However, for the diverse group of freshwater plants, such research program is still in its infancy. Here, we examined global variation in taxonomic, functional and phylogenetic beta diversity patterns of lake macrophytes using regional data from six continents.

View Article and Find Full Text PDF

Disentangling the relative role of species sorting and dispersal limitation in biological communities has become one of the main issues for community ecologists and biogeographers. In this study, we analysed a data set of epiphytic diatoms comprising 34 lakes from six European countries. This data set covers a relatively large latitudinal gradient to elucidate which processes are affecting the distribution of diatom communities on a broad spatial extent.

View Article and Find Full Text PDF

The degree to which dispersal limitation interacts with environmental filtering has intrigued metacommunity ecologists and molecular biogeographers since the beginning of both research disciplines. Since genetic methods are superior to coarse proxies of dispersal, understanding how environmental and geographic factors influence population genetic structure is becoming a fundamental issue for population genetics and also one of the most challenging avenues for metacommunity ecology. In this study of the aquatic macrophyte Myriophyllum alterniflorum DC.

View Article and Find Full Text PDF

Metacommunity ecology has broadened considerably with the recognition that measuring beta diversity beyond the purely taxonomic viewpoint may improve our understanding of the dispersal- and niche-based mechanisms across biological communities. In that perspective, we applied a novel multidimensional approach including taxonomic, functional and phylogenetic data to enhance our basic understanding of macrophyte metacommunity dynamics. For each beta diversity metric, we calculated the mean overall value and tested whether the mean value was different from that expected by chance using null models.

View Article and Find Full Text PDF